Properties

Label 2-1280-40.27-c1-0-29
Degree 22
Conductor 12801280
Sign 0.229+0.973i0.229 + 0.973i
Analytic cond. 10.220810.2208
Root an. cond. 3.197003.19700
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.73 + 1.73i)3-s + (2 − i)5-s + (−1.73 + 1.73i)7-s − 2.99i·9-s − 3.46·11-s + (−1 − i)13-s + (−1.73 + 5.19i)15-s + (1 + i)17-s − 6.92i·19-s − 5.99i·21-s + (1.73 + 1.73i)23-s + (3 − 4i)25-s − 4·29-s − 3.46i·31-s + (5.99 − 5.99i)33-s + ⋯
L(s)  = 1  + (−0.999 + 0.999i)3-s + (0.894 − 0.447i)5-s + (−0.654 + 0.654i)7-s − 0.999i·9-s − 1.04·11-s + (−0.277 − 0.277i)13-s + (−0.447 + 1.34i)15-s + (0.242 + 0.242i)17-s − 1.58i·19-s − 1.30i·21-s + (0.361 + 0.361i)23-s + (0.600 − 0.800i)25-s − 0.742·29-s − 0.622i·31-s + (1.04 − 1.04i)33-s + ⋯

Functional equation

Λ(s)=(1280s/2ΓC(s)L(s)=((0.229+0.973i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 1280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.229 + 0.973i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(1280s/2ΓC(s+1/2)L(s)=((0.229+0.973i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1280 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.229 + 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 12801280    =    2852^{8} \cdot 5
Sign: 0.229+0.973i0.229 + 0.973i
Analytic conductor: 10.220810.2208
Root analytic conductor: 3.197003.19700
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ1280(127,)\chi_{1280} (127, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 1280, ( :1/2), 0.229+0.973i)(2,\ 1280,\ (\ :1/2),\ 0.229 + 0.973i)

Particular Values

L(1)L(1) \approx 0.51669455280.5166945528
L(12)L(\frac12) \approx 0.51669455280.5166945528
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
5 1+(2+i)T 1 + (-2 + i)T
good3 1+(1.731.73i)T3iT2 1 + (1.73 - 1.73i)T - 3iT^{2}
7 1+(1.731.73i)T7iT2 1 + (1.73 - 1.73i)T - 7iT^{2}
11 1+3.46T+11T2 1 + 3.46T + 11T^{2}
13 1+(1+i)T+13iT2 1 + (1 + i)T + 13iT^{2}
17 1+(1i)T+17iT2 1 + (-1 - i)T + 17iT^{2}
19 1+6.92iT19T2 1 + 6.92iT - 19T^{2}
23 1+(1.731.73i)T+23iT2 1 + (-1.73 - 1.73i)T + 23iT^{2}
29 1+4T+29T2 1 + 4T + 29T^{2}
31 1+3.46iT31T2 1 + 3.46iT - 31T^{2}
37 1+(55i)T37iT2 1 + (5 - 5i)T - 37iT^{2}
41 1+2T+41T2 1 + 2T + 41T^{2}
43 1+(1.73+1.73i)T43iT2 1 + (-1.73 + 1.73i)T - 43iT^{2}
47 1+(1.73+1.73i)T47iT2 1 + (-1.73 + 1.73i)T - 47iT^{2}
53 1+(7+7i)T+53iT2 1 + (7 + 7i)T + 53iT^{2}
59 1+6.92iT59T2 1 + 6.92iT - 59T^{2}
61 1+6iT61T2 1 + 6iT - 61T^{2}
67 1+(5.195.19i)T+67iT2 1 + (-5.19 - 5.19i)T + 67iT^{2}
71 1+10.3iT71T2 1 + 10.3iT - 71T^{2}
73 1+(7+7i)T73iT2 1 + (-7 + 7i)T - 73iT^{2}
79 1+79T2 1 + 79T^{2}
83 1+(12.1+12.1i)T83iT2 1 + (-12.1 + 12.1i)T - 83iT^{2}
89 18iT89T2 1 - 8iT - 89T^{2}
97 1+(7+7i)T+97iT2 1 + (7 + 7i)T + 97iT^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.551560074561674402793001976615, −9.101271844859588202255574280744, −7.969999073993914266515876612248, −6.70447746767751334270346422246, −5.90778790918733634070926631841, −5.16915417877838436444398136043, −4.82683924462730180611968558361, −3.33255254272453614835478172189, −2.24096494037619119545903925712, −0.25121060942101382308634355860, 1.28010530310604080380166095018, 2.42854529908805877705980196381, 3.65396983861386526050381774564, 5.18792158427783697959793701449, 5.77233802754215129801695055420, 6.56092404051223673078947372650, 7.18728284059622544956968250650, 7.86636176683589143209395426461, 9.187664318128829843354250568831, 10.11506902775873034861509985623

Graph of the ZZ-function along the critical line