L(s) = 1 | + (−1.73 + 1.73i)3-s + (2 − i)5-s + (−1.73 + 1.73i)7-s − 2.99i·9-s − 3.46·11-s + (−1 − i)13-s + (−1.73 + 5.19i)15-s + (1 + i)17-s − 6.92i·19-s − 5.99i·21-s + (1.73 + 1.73i)23-s + (3 − 4i)25-s − 4·29-s − 3.46i·31-s + (5.99 − 5.99i)33-s + ⋯ |
L(s) = 1 | + (−0.999 + 0.999i)3-s + (0.894 − 0.447i)5-s + (−0.654 + 0.654i)7-s − 0.999i·9-s − 1.04·11-s + (−0.277 − 0.277i)13-s + (−0.447 + 1.34i)15-s + (0.242 + 0.242i)17-s − 1.58i·19-s − 1.30i·21-s + (0.361 + 0.361i)23-s + (0.600 − 0.800i)25-s − 0.742·29-s − 0.622i·31-s + (1.04 − 1.04i)33-s + ⋯ |
Λ(s)=(=(1280s/2ΓC(s)L(s)(0.229+0.973i)Λ(2−s)
Λ(s)=(=(1280s/2ΓC(s+1/2)L(s)(0.229+0.973i)Λ(1−s)
Degree: |
2 |
Conductor: |
1280
= 28⋅5
|
Sign: |
0.229+0.973i
|
Analytic conductor: |
10.2208 |
Root analytic conductor: |
3.19700 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1280(127,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1280, ( :1/2), 0.229+0.973i)
|
Particular Values
L(1) |
≈ |
0.5166945528 |
L(21) |
≈ |
0.5166945528 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(−2+i)T |
good | 3 | 1+(1.73−1.73i)T−3iT2 |
| 7 | 1+(1.73−1.73i)T−7iT2 |
| 11 | 1+3.46T+11T2 |
| 13 | 1+(1+i)T+13iT2 |
| 17 | 1+(−1−i)T+17iT2 |
| 19 | 1+6.92iT−19T2 |
| 23 | 1+(−1.73−1.73i)T+23iT2 |
| 29 | 1+4T+29T2 |
| 31 | 1+3.46iT−31T2 |
| 37 | 1+(5−5i)T−37iT2 |
| 41 | 1+2T+41T2 |
| 43 | 1+(−1.73+1.73i)T−43iT2 |
| 47 | 1+(−1.73+1.73i)T−47iT2 |
| 53 | 1+(7+7i)T+53iT2 |
| 59 | 1+6.92iT−59T2 |
| 61 | 1+6iT−61T2 |
| 67 | 1+(−5.19−5.19i)T+67iT2 |
| 71 | 1+10.3iT−71T2 |
| 73 | 1+(−7+7i)T−73iT2 |
| 79 | 1+79T2 |
| 83 | 1+(−12.1+12.1i)T−83iT2 |
| 89 | 1−8iT−89T2 |
| 97 | 1+(7+7i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.551560074561674402793001976615, −9.101271844859588202255574280744, −7.969999073993914266515876612248, −6.70447746767751334270346422246, −5.90778790918733634070926631841, −5.16915417877838436444398136043, −4.82683924462730180611968558361, −3.33255254272453614835478172189, −2.24096494037619119545903925712, −0.25121060942101382308634355860,
1.28010530310604080380166095018, 2.42854529908805877705980196381, 3.65396983861386526050381774564, 5.18792158427783697959793701449, 5.77233802754215129801695055420, 6.56092404051223673078947372650, 7.18728284059622544956968250650, 7.86636176683589143209395426461, 9.187664318128829843354250568831, 10.11506902775873034861509985623