Properties

Label 2-1274-1.1-c1-0-4
Degree $2$
Conductor $1274$
Sign $1$
Analytic cond. $10.1729$
Root an. cond. $3.18950$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 0.111·3-s + 4-s − 2.69·5-s + 0.111·6-s − 8-s − 2.98·9-s + 2.69·10-s − 3.17·11-s − 0.111·12-s + 13-s + 0.300·15-s + 16-s − 0.810·17-s + 2.98·18-s − 4·19-s − 2.69·20-s + 3.17·22-s + 8.57·23-s + 0.111·24-s + 2.28·25-s − 26-s + 0.666·27-s + 3.17·29-s − 0.300·30-s − 3.57·31-s − 32-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.0642·3-s + 0.5·4-s − 1.20·5-s + 0.0454·6-s − 0.353·8-s − 0.995·9-s + 0.853·10-s − 0.957·11-s − 0.0321·12-s + 0.277·13-s + 0.0775·15-s + 0.250·16-s − 0.196·17-s + 0.704·18-s − 0.917·19-s − 0.603·20-s + 0.677·22-s + 1.78·23-s + 0.0227·24-s + 0.457·25-s − 0.196·26-s + 0.128·27-s + 0.589·29-s − 0.0548·30-s − 0.642·31-s − 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1274 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1274 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1274\)    =    \(2 \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(10.1729\)
Root analytic conductor: \(3.18950\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1274,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5869443999\)
\(L(\frac12)\) \(\approx\) \(0.5869443999\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
7 \( 1 \)
13 \( 1 - T \)
good3 \( 1 + 0.111T + 3T^{2} \)
5 \( 1 + 2.69T + 5T^{2} \)
11 \( 1 + 3.17T + 11T^{2} \)
17 \( 1 + 0.810T + 17T^{2} \)
19 \( 1 + 4T + 19T^{2} \)
23 \( 1 - 8.57T + 23T^{2} \)
29 \( 1 - 3.17T + 29T^{2} \)
31 \( 1 + 3.57T + 31T^{2} \)
37 \( 1 - 10.9T + 37T^{2} \)
41 \( 1 + 5.39T + 41T^{2} \)
43 \( 1 - 8.47T + 43T^{2} \)
47 \( 1 + 3.98T + 47T^{2} \)
53 \( 1 + 3.77T + 53T^{2} \)
59 \( 1 - 10.1T + 59T^{2} \)
61 \( 1 - 2T + 61T^{2} \)
67 \( 1 - 0.378T + 67T^{2} \)
71 \( 1 + 2.36T + 71T^{2} \)
73 \( 1 - 13.1T + 73T^{2} \)
79 \( 1 - 8T + 79T^{2} \)
83 \( 1 + 17.1T + 83T^{2} \)
89 \( 1 + 6T + 89T^{2} \)
97 \( 1 - 18.1T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.552527937717444912730212481510, −8.632950970803048022971745079598, −8.201650019986468416907069995995, −7.43794042978314611688841527226, −6.57003698508000805537383170217, −5.53690031590369306204347945477, −4.52285955707805173394104176787, −3.34029596520883337536415853019, −2.46963818614324742099556100731, −0.60047185875958258134109976946, 0.60047185875958258134109976946, 2.46963818614324742099556100731, 3.34029596520883337536415853019, 4.52285955707805173394104176787, 5.53690031590369306204347945477, 6.57003698508000805537383170217, 7.43794042978314611688841527226, 8.201650019986468416907069995995, 8.632950970803048022971745079598, 9.552527937717444912730212481510

Graph of the $Z$-function along the critical line