Properties

Label 2-1274-1.1-c1-0-21
Degree $2$
Conductor $1274$
Sign $1$
Analytic cond. $10.1729$
Root an. cond. $3.18950$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3.05·3-s + 4-s + 1.46·5-s − 3.05·6-s − 8-s + 6.32·9-s − 1.46·10-s − 1.18·11-s + 3.05·12-s + 13-s + 4.46·15-s + 16-s + 6.51·17-s − 6.32·18-s − 4·19-s + 1.46·20-s + 1.18·22-s − 1.73·23-s − 3.05·24-s − 2.86·25-s − 26-s + 10.1·27-s + 1.18·29-s − 4.46·30-s + 6.73·31-s − 32-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.76·3-s + 0.5·4-s + 0.653·5-s − 1.24·6-s − 0.353·8-s + 2.10·9-s − 0.461·10-s − 0.357·11-s + 0.881·12-s + 0.277·13-s + 1.15·15-s + 0.250·16-s + 1.58·17-s − 1.49·18-s − 0.917·19-s + 0.326·20-s + 0.253·22-s − 0.361·23-s − 0.623·24-s − 0.573·25-s − 0.196·26-s + 1.95·27-s + 0.220·29-s − 0.814·30-s + 1.20·31-s − 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1274 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1274 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1274\)    =    \(2 \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(10.1729\)
Root analytic conductor: \(3.18950\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1274,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.580087874\)
\(L(\frac12)\) \(\approx\) \(2.580087874\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
7 \( 1 \)
13 \( 1 - T \)
good3 \( 1 - 3.05T + 3T^{2} \)
5 \( 1 - 1.46T + 5T^{2} \)
11 \( 1 + 1.18T + 11T^{2} \)
17 \( 1 - 6.51T + 17T^{2} \)
19 \( 1 + 4T + 19T^{2} \)
23 \( 1 + 1.73T + 23T^{2} \)
29 \( 1 - 1.18T + 29T^{2} \)
31 \( 1 - 6.73T + 31T^{2} \)
37 \( 1 + 8.89T + 37T^{2} \)
41 \( 1 - 2.92T + 41T^{2} \)
43 \( 1 - 10.6T + 43T^{2} \)
47 \( 1 - 5.32T + 47T^{2} \)
53 \( 1 + 10.1T + 53T^{2} \)
59 \( 1 + 14.7T + 59T^{2} \)
61 \( 1 - 2T + 61T^{2} \)
67 \( 1 - 15.0T + 67T^{2} \)
71 \( 1 + 7.70T + 71T^{2} \)
73 \( 1 + 7.46T + 73T^{2} \)
79 \( 1 - 8T + 79T^{2} \)
83 \( 1 - 3.46T + 83T^{2} \)
89 \( 1 + 6T + 89T^{2} \)
97 \( 1 + 6.76T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.547869049417696197720550393339, −8.896296109359886186656550676649, −8.051350744296809222866576432789, −7.72117083876957512042360433045, −6.62363019414199984194242485129, −5.63643676309001835091498660886, −4.21096786098111560195417268153, −3.18429849019966966561897933393, −2.37528495387793478100178885968, −1.41655737864030535304798372541, 1.41655737864030535304798372541, 2.37528495387793478100178885968, 3.18429849019966966561897933393, 4.21096786098111560195417268153, 5.63643676309001835091498660886, 6.62363019414199984194242485129, 7.72117083876957512042360433045, 8.051350744296809222866576432789, 8.896296109359886186656550676649, 9.547869049417696197720550393339

Graph of the $Z$-function along the critical line