| L(s) = 1 | + 1.15·2-s + (1.20 + 2.08i)3-s − 0.660·4-s + 0.956·5-s + (1.39 + 2.41i)6-s + (−1.35 − 2.35i)7-s − 3.07·8-s + (−1.39 + 2.41i)9-s + 1.10·10-s + (0.927 − 1.60i)11-s + (−0.794 − 1.37i)12-s + (1.21 + 2.11i)13-s + (−1.57 − 2.72i)14-s + (1.14 + 1.99i)15-s − 2.24·16-s + (1.89 − 3.28i)17-s + ⋯ |
| L(s) = 1 | + 0.818·2-s + (0.694 + 1.20i)3-s − 0.330·4-s + 0.427·5-s + (0.568 + 0.983i)6-s + (−0.513 − 0.889i)7-s − 1.08·8-s + (−0.463 + 0.803i)9-s + 0.349·10-s + (0.279 − 0.484i)11-s + (−0.229 − 0.397i)12-s + (0.338 + 0.586i)13-s + (−0.420 − 0.727i)14-s + (0.296 + 0.514i)15-s − 0.560·16-s + (0.459 − 0.795i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 127 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.743 - 0.668i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 127 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.743 - 0.668i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.54198 + 0.590935i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.54198 + 0.590935i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 127 | \( 1 + (11.1 + 1.74i)T \) |
| good | 2 | \( 1 - 1.15T + 2T^{2} \) |
| 3 | \( 1 + (-1.20 - 2.08i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 - 0.956T + 5T^{2} \) |
| 7 | \( 1 + (1.35 + 2.35i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-0.927 + 1.60i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-1.21 - 2.11i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-1.89 + 3.28i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + 0.695T + 19T^{2} \) |
| 23 | \( 1 + (0.861 + 1.49i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (3.55 - 6.16i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (0.312 + 0.541i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (3.42 - 5.92i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (4.37 - 7.57i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-4.66 + 8.07i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 8.35T + 47T^{2} \) |
| 53 | \( 1 + (4.68 - 8.11i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-5.97 + 10.3i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 - 10.2T + 61T^{2} \) |
| 67 | \( 1 + (-6.30 - 10.9i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (5.37 + 9.30i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 10.4T + 73T^{2} \) |
| 79 | \( 1 + (-1.71 - 2.97i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (6.76 - 11.7i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 2.66T + 89T^{2} \) |
| 97 | \( 1 + (6.47 + 11.2i)T + (-48.5 + 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.92028312361377970272590657124, −12.82512011492121639739518226295, −11.42178996401390788245767860629, −10.08337097001334411304410827712, −9.469998644888539319630894823111, −8.498921059306594222111442429218, −6.64974951713132320356283863542, −5.21491224213858945752549691570, −4.03682818832008690326221509162, −3.27323886803086268762925620073,
2.19410045829833011474007397682, 3.63416609184221645235831423934, 5.54966152890971633640815695061, 6.38848074274947339844451186639, 7.87791667003482075848957406947, 8.881019555444675104341190546607, 9.878103331774803576009843675707, 11.80132712649318441289730977476, 12.74368030722091153914733965139, 13.06633316539699179027817186139