L(s) = 1 | + (2 + 3.46i)2-s + (−7.99 + 13.8i)4-s + (−37.7 − 65.3i)5-s + (99.4 + 83.1i)7-s − 63.9·8-s + (150. − 261. i)10-s + (−74.7 + 129. i)11-s + 349.·13-s + (−88.9 + 510. i)14-s + (−128 − 221. i)16-s + (−574. + 995. i)17-s + (1.39e3 + 2.42e3i)19-s + 1.20e3·20-s − 597.·22-s + (906. + 1.57e3i)23-s + ⋯ |
L(s) = 1 | + (0.353 + 0.612i)2-s + (−0.249 + 0.433i)4-s + (−0.675 − 1.16i)5-s + (0.767 + 0.641i)7-s − 0.353·8-s + (0.477 − 0.826i)10-s + (−0.186 + 0.322i)11-s + 0.573·13-s + (−0.121 + 0.696i)14-s + (−0.125 − 0.216i)16-s + (−0.482 + 0.835i)17-s + (0.888 + 1.53i)19-s + 0.675·20-s − 0.263·22-s + (0.357 + 0.619i)23-s + ⋯ |
Λ(s)=(=(126s/2ΓC(s)L(s)(−0.283−0.958i)Λ(6−s)
Λ(s)=(=(126s/2ΓC(s+5/2)L(s)(−0.283−0.958i)Λ(1−s)
Degree: |
2 |
Conductor: |
126
= 2⋅32⋅7
|
Sign: |
−0.283−0.958i
|
Analytic conductor: |
20.2083 |
Root analytic conductor: |
4.49537 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ126(109,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 126, ( :5/2), −0.283−0.958i)
|
Particular Values
L(3) |
≈ |
1.774437489 |
L(21) |
≈ |
1.774437489 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−2−3.46i)T |
| 3 | 1 |
| 7 | 1+(−99.4−83.1i)T |
good | 5 | 1+(37.7+65.3i)T+(−1.56e3+2.70e3i)T2 |
| 11 | 1+(74.7−129.i)T+(−8.05e4−1.39e5i)T2 |
| 13 | 1−349.T+3.71e5T2 |
| 17 | 1+(574.−995.i)T+(−7.09e5−1.22e6i)T2 |
| 19 | 1+(−1.39e3−2.42e3i)T+(−1.23e6+2.14e6i)T2 |
| 23 | 1+(−906.−1.57e3i)T+(−3.21e6+5.57e6i)T2 |
| 29 | 1−759.T+2.05e7T2 |
| 31 | 1+(4.51e3−7.82e3i)T+(−1.43e7−2.47e7i)T2 |
| 37 | 1+(3.89e3+6.75e3i)T+(−3.46e7+6.00e7i)T2 |
| 41 | 1+7.64e3T+1.15e8T2 |
| 43 | 1−1.21e4T+1.47e8T2 |
| 47 | 1+(−1.22e4−2.13e4i)T+(−1.14e8+1.98e8i)T2 |
| 53 | 1+(−6.79e3+1.17e4i)T+(−2.09e8−3.62e8i)T2 |
| 59 | 1+(1.31e4−2.28e4i)T+(−3.57e8−6.19e8i)T2 |
| 61 | 1+(1.76e4+3.05e4i)T+(−4.22e8+7.31e8i)T2 |
| 67 | 1+(2.71e4−4.70e4i)T+(−6.75e8−1.16e9i)T2 |
| 71 | 1−7.01e4T+1.80e9T2 |
| 73 | 1+(−2.22e4+3.85e4i)T+(−1.03e9−1.79e9i)T2 |
| 79 | 1+(3.08e4+5.33e4i)T+(−1.53e9+2.66e9i)T2 |
| 83 | 1−8.71e4T+3.93e9T2 |
| 89 | 1+(−4.92e4−8.53e4i)T+(−2.79e9+4.83e9i)T2 |
| 97 | 1−3.23e4T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.53446872502082297497047132326, −12.16731854174008987027063596343, −10.86875413472673608775950323597, −9.146089291219129019229596722986, −8.370005846194992190988347012092, −7.54417407631467050454184774319, −5.81834115349266830926858240154, −4.91503309142647855348890016267, −3.74275675750012345361824928925, −1.46635481624463237676080239482,
0.61348372369356748237067130245, 2.58068510479999918438822279089, 3.76025057644362189423688096054, 5.02111176747107316413682331182, 6.73206824287478074101875780849, 7.65066742977170227177663064754, 9.074350102716754245921414724597, 10.54997256087262906756088590123, 11.15636219001585365005270904404, 11.75177074711858353578277098089