L(s) = 1 | + (−2 + 3.46i)2-s + (−7.99 − 13.8i)4-s + (43 − 74.4i)5-s + (24.5 + 127. i)7-s + 63.9·8-s + (172 + 297. i)10-s + (17 + 29.4i)11-s − 3·13-s + (−490 − 169. i)14-s + (−128 + 221. i)16-s + (−952 − 1.64e3i)17-s + (744.5 − 1.28e3i)19-s − 1.37e3·20-s − 136·22-s + (−112 + 193. i)23-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + (−0.249 − 0.433i)4-s + (0.769 − 1.33i)5-s + (0.188 + 0.981i)7-s + 0.353·8-s + (0.543 + 0.942i)10-s + (0.0423 + 0.0733i)11-s − 0.00492·13-s + (−0.668 − 0.231i)14-s + (−0.125 + 0.216i)16-s + (−0.798 − 1.38i)17-s + (0.473 − 0.819i)19-s − 0.769·20-s − 0.0599·22-s + (−0.0441 + 0.0764i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 126 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.701 + 0.712i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 126 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.701 + 0.712i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(1.575203374\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.575203374\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (2 - 3.46i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-24.5 - 127. i)T \) |
good | 5 | \( 1 + (-43 + 74.4i)T + (-1.56e3 - 2.70e3i)T^{2} \) |
| 11 | \( 1 + (-17 - 29.4i)T + (-8.05e4 + 1.39e5i)T^{2} \) |
| 13 | \( 1 + 3T + 3.71e5T^{2} \) |
| 17 | \( 1 + (952 + 1.64e3i)T + (-7.09e5 + 1.22e6i)T^{2} \) |
| 19 | \( 1 + (-744.5 + 1.28e3i)T + (-1.23e6 - 2.14e6i)T^{2} \) |
| 23 | \( 1 + (112 - 193. i)T + (-3.21e6 - 5.57e6i)T^{2} \) |
| 29 | \( 1 - 6.50e3T + 2.05e7T^{2} \) |
| 31 | \( 1 + (865.5 + 1.49e3i)T + (-1.43e7 + 2.47e7i)T^{2} \) |
| 37 | \( 1 + (-3.81e3 + 6.61e3i)T + (-3.46e7 - 6.00e7i)T^{2} \) |
| 41 | \( 1 + 1.54e4T + 1.15e8T^{2} \) |
| 43 | \( 1 - 1.84e4T + 1.47e8T^{2} \) |
| 47 | \( 1 + (-9.23e3 + 1.59e4i)T + (-1.14e8 - 1.98e8i)T^{2} \) |
| 53 | \( 1 + (9.97e3 + 1.72e4i)T + (-2.09e8 + 3.62e8i)T^{2} \) |
| 59 | \( 1 + (1.59e4 + 2.75e4i)T + (-3.57e8 + 6.19e8i)T^{2} \) |
| 61 | \( 1 + (-2.88e4 + 4.99e4i)T + (-4.22e8 - 7.31e8i)T^{2} \) |
| 67 | \( 1 + (-3.02e4 - 5.24e4i)T + (-6.75e8 + 1.16e9i)T^{2} \) |
| 71 | \( 1 - 4.48e4T + 1.80e9T^{2} \) |
| 73 | \( 1 + (1.04e4 + 1.80e4i)T + (-1.03e9 + 1.79e9i)T^{2} \) |
| 79 | \( 1 + (-1.52e4 + 2.64e4i)T + (-1.53e9 - 2.66e9i)T^{2} \) |
| 83 | \( 1 + 1.10e5T + 3.93e9T^{2} \) |
| 89 | \( 1 + (2.94e4 - 5.10e4i)T + (-2.79e9 - 4.83e9i)T^{2} \) |
| 97 | \( 1 + 1.19e5T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.43962766554333170932045131223, −11.36026901215058977324883575385, −9.685611258196233211697745416918, −9.104236082713579592205068801502, −8.287070765314431019593228174159, −6.75741454429977318695320174693, −5.44230902473452813092550765238, −4.79996547767837381629470601268, −2.26218463432017689930234043840, −0.67595369847524546068737375325,
1.44460658467957459808430116037, 2.86239199192186352278225345257, 4.16386758640112654404793520164, 6.11395645778833663265538543906, 7.13178686974369896815202397204, 8.359306321789112939515752766080, 9.871633778189003266884067843141, 10.49288002165596559377141457118, 11.15066630278907109007839729394, 12.52730758874145941623508495239