L(s) = 1 | + (2 − 3.46i)2-s + (−7.99 − 13.8i)4-s + (11.2 − 19.4i)5-s + (−96.4 + 86.5i)7-s − 63.9·8-s + (−44.9 − 77.9i)10-s + (170. + 294. i)11-s − 728.·13-s + (106. + 507. i)14-s + (−128 + 221. i)16-s + (404. + 701. i)17-s + (−513. + 888. i)19-s − 359.·20-s + 1.36e3·22-s + (711. − 1.23e3i)23-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (−0.249 − 0.433i)4-s + (0.201 − 0.348i)5-s + (−0.744 + 0.667i)7-s − 0.353·8-s + (−0.142 − 0.246i)10-s + (0.424 + 0.734i)11-s − 1.19·13-s + (0.145 + 0.691i)14-s + (−0.125 + 0.216i)16-s + (0.339 + 0.588i)17-s + (−0.326 + 0.564i)19-s − 0.201·20-s + 0.599·22-s + (0.280 − 0.485i)23-s + ⋯ |
Λ(s)=(=(126s/2ΓC(s)L(s)(0.249−0.968i)Λ(6−s)
Λ(s)=(=(126s/2ΓC(s+5/2)L(s)(0.249−0.968i)Λ(1−s)
Degree: |
2 |
Conductor: |
126
= 2⋅32⋅7
|
Sign: |
0.249−0.968i
|
Analytic conductor: |
20.2083 |
Root analytic conductor: |
4.49537 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ126(37,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 126, ( :5/2), 0.249−0.968i)
|
Particular Values
L(3) |
≈ |
1.060121984 |
L(21) |
≈ |
1.060121984 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−2+3.46i)T |
| 3 | 1 |
| 7 | 1+(96.4−86.5i)T |
good | 5 | 1+(−11.2+19.4i)T+(−1.56e3−2.70e3i)T2 |
| 11 | 1+(−170.−294.i)T+(−8.05e4+1.39e5i)T2 |
| 13 | 1+728.T+3.71e5T2 |
| 17 | 1+(−404.−701.i)T+(−7.09e5+1.22e6i)T2 |
| 19 | 1+(513.−888.i)T+(−1.23e6−2.14e6i)T2 |
| 23 | 1+(−711.+1.23e3i)T+(−3.21e6−5.57e6i)T2 |
| 29 | 1+5.21e3T+2.05e7T2 |
| 31 | 1+(−3.51e3−6.09e3i)T+(−1.43e7+2.47e7i)T2 |
| 37 | 1+(6.39e3−1.10e4i)T+(−3.46e7−6.00e7i)T2 |
| 41 | 1+1.17e3T+1.15e8T2 |
| 43 | 1−3.66e3T+1.47e8T2 |
| 47 | 1+(−4.65e3+8.06e3i)T+(−1.14e8−1.98e8i)T2 |
| 53 | 1+(−1.78e4−3.08e4i)T+(−2.09e8+3.62e8i)T2 |
| 59 | 1+(1.51e4+2.63e4i)T+(−3.57e8+6.19e8i)T2 |
| 61 | 1+(1.60e4−2.78e4i)T+(−4.22e8−7.31e8i)T2 |
| 67 | 1+(1.06e4+1.84e4i)T+(−6.75e8+1.16e9i)T2 |
| 71 | 1+6.11e4T+1.80e9T2 |
| 73 | 1+(2.06e4+3.57e4i)T+(−1.03e9+1.79e9i)T2 |
| 79 | 1+(−1.75e4+3.03e4i)T+(−1.53e9−2.66e9i)T2 |
| 83 | 1+8.61e4T+3.93e9T2 |
| 89 | 1+(−3.89e4+6.75e4i)T+(−2.79e9−4.83e9i)T2 |
| 97 | 1+1.61e5T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.38397056920781184405751426184, −12.10744426207410414675035052999, −10.48792031285069340291983896714, −9.652441778762173953483579197447, −8.740659253089825151546420509926, −7.06833211016014294132596465115, −5.76361348712872961936788925217, −4.59976368735826400567093840977, −3.07636583610418081012046819235, −1.68054151491906424939103888895,
0.32654658014322787206962656965, 2.79605513249982321686827325637, 4.12457067199298598192794404726, 5.59202045253676122459458449674, 6.76495015722998805396506992118, 7.54755158398408503166965863555, 9.069879192122574898495856516542, 10.01083363831106342268891736571, 11.25742572585084114353443442387, 12.44960581179986635913304281894