L(s) = 1 | + (−0.707 − 1.22i)2-s + (−2.95 + 0.522i)3-s + (−0.999 + 1.73i)4-s + (−4.10 − 2.36i)5-s + (2.72 + 3.24i)6-s + (5.29 + 4.58i)7-s + 2.82·8-s + (8.45 − 3.08i)9-s + 6.70i·10-s + (3.85 + 6.67i)11-s + (2.04 − 5.63i)12-s + (13.7 + 7.91i)13-s + (1.86 − 9.72i)14-s + (13.3 + 4.85i)15-s + (−2.00 − 3.46i)16-s + 4.53i·17-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (−0.984 + 0.174i)3-s + (−0.249 + 0.433i)4-s + (−0.820 − 0.473i)5-s + (0.454 + 0.541i)6-s + (0.756 + 0.654i)7-s + 0.353·8-s + (0.939 − 0.343i)9-s + 0.670i·10-s + (0.350 + 0.607i)11-s + (0.170 − 0.469i)12-s + (1.05 + 0.608i)13-s + (0.133 − 0.694i)14-s + (0.890 + 0.323i)15-s + (−0.125 − 0.216i)16-s + 0.266i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 126 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.944 - 0.328i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 126 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.944 - 0.328i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.755950 + 0.127757i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.755950 + 0.127757i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 + 1.22i)T \) |
| 3 | \( 1 + (2.95 - 0.522i)T \) |
| 7 | \( 1 + (-5.29 - 4.58i)T \) |
good | 5 | \( 1 + (4.10 + 2.36i)T + (12.5 + 21.6i)T^{2} \) |
| 11 | \( 1 + (-3.85 - 6.67i)T + (-60.5 + 104. i)T^{2} \) |
| 13 | \( 1 + (-13.7 - 7.91i)T + (84.5 + 146. i)T^{2} \) |
| 17 | \( 1 - 4.53iT - 289T^{2} \) |
| 19 | \( 1 - 17.9iT - 361T^{2} \) |
| 23 | \( 1 + (-7.38 + 12.7i)T + (-264.5 - 458. i)T^{2} \) |
| 29 | \( 1 + (-12.9 - 22.4i)T + (-420.5 + 728. i)T^{2} \) |
| 31 | \( 1 + (-35.5 - 20.5i)T + (480.5 + 832. i)T^{2} \) |
| 37 | \( 1 + 55.1T + 1.36e3T^{2} \) |
| 41 | \( 1 + (20.3 + 11.7i)T + (840.5 + 1.45e3i)T^{2} \) |
| 43 | \( 1 + (-31.8 - 55.1i)T + (-924.5 + 1.60e3i)T^{2} \) |
| 47 | \( 1 + (-20.3 + 11.7i)T + (1.10e3 - 1.91e3i)T^{2} \) |
| 53 | \( 1 + 41.2T + 2.80e3T^{2} \) |
| 59 | \( 1 + (-69.7 - 40.2i)T + (1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 + (4.59 - 2.65i)T + (1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-55.9 + 96.8i)T + (-2.24e3 - 3.88e3i)T^{2} \) |
| 71 | \( 1 - 90.1T + 5.04e3T^{2} \) |
| 73 | \( 1 + 108. iT - 5.32e3T^{2} \) |
| 79 | \( 1 + (-0.901 - 1.56i)T + (-3.12e3 + 5.40e3i)T^{2} \) |
| 83 | \( 1 + (133. - 77.0i)T + (3.44e3 - 5.96e3i)T^{2} \) |
| 89 | \( 1 - 114. iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-132. + 76.4i)T + (4.70e3 - 8.14e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.50441280650677455028953223697, −12.10126306535329718265845593536, −11.26300242385690300542330847847, −10.34395875934864983712380319117, −8.972399135401778438319751741228, −8.073646923440611536618580725552, −6.54405923059410754578222012276, −4.97762274407181322299567372366, −3.96614298625602509043054871851, −1.41960959165505462833531384483,
0.803913425542783174097566294973, 3.95308806928518965308001803866, 5.32952071876223003832145177435, 6.61724374663410688861712750476, 7.51437155911144201673334460438, 8.507935751619033572823372828505, 10.19286460103755618324942035564, 11.17126980239361875527209545091, 11.59804388321331246031616026954, 13.23699450564209185322401014773