L(s) = 1 | + 1.41i·2-s + (−2.24 − 1.98i)3-s − 2.00·4-s + (1.84 + 1.06i)5-s + (2.80 − 3.18i)6-s + (6.16 + 3.31i)7-s − 2.82i·8-s + (1.11 + 8.93i)9-s + (−1.50 + 2.60i)10-s + (7.75 − 4.47i)11-s + (4.49 + 3.97i)12-s + (10.4 + 18.0i)13-s + (−4.68 + 8.72i)14-s + (−2.03 − 6.05i)15-s + 4.00·16-s + (9.01 + 5.20i)17-s + ⋯ |
L(s) = 1 | + 0.707i·2-s + (−0.749 − 0.661i)3-s − 0.500·4-s + (0.368 + 0.212i)5-s + (0.468 − 0.530i)6-s + (0.881 + 0.473i)7-s − 0.353i·8-s + (0.123 + 0.992i)9-s + (−0.150 + 0.260i)10-s + (0.705 − 0.407i)11-s + (0.374 + 0.330i)12-s + (0.801 + 1.38i)13-s + (−0.334 + 0.622i)14-s + (−0.135 − 0.403i)15-s + 0.250·16-s + (0.530 + 0.306i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 126 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.570 - 0.821i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 126 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.570 - 0.821i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.10126 + 0.576320i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.10126 + 0.576320i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - 1.41iT \) |
| 3 | \( 1 + (2.24 + 1.98i)T \) |
| 7 | \( 1 + (-6.16 - 3.31i)T \) |
good | 5 | \( 1 + (-1.84 - 1.06i)T + (12.5 + 21.6i)T^{2} \) |
| 11 | \( 1 + (-7.75 + 4.47i)T + (60.5 - 104. i)T^{2} \) |
| 13 | \( 1 + (-10.4 - 18.0i)T + (-84.5 + 146. i)T^{2} \) |
| 17 | \( 1 + (-9.01 - 5.20i)T + (144.5 + 250. i)T^{2} \) |
| 19 | \( 1 + (-6.15 - 10.6i)T + (-180.5 + 312. i)T^{2} \) |
| 23 | \( 1 + (16.5 + 9.55i)T + (264.5 + 458. i)T^{2} \) |
| 29 | \( 1 + (28.3 + 16.3i)T + (420.5 + 728. i)T^{2} \) |
| 31 | \( 1 - 37.8T + 961T^{2} \) |
| 37 | \( 1 + (-16.9 - 29.3i)T + (-684.5 + 1.18e3i)T^{2} \) |
| 41 | \( 1 + (28.7 - 16.6i)T + (840.5 - 1.45e3i)T^{2} \) |
| 43 | \( 1 + (-10.3 + 17.9i)T + (-924.5 - 1.60e3i)T^{2} \) |
| 47 | \( 1 + 66.2iT - 2.20e3T^{2} \) |
| 53 | \( 1 + (-2.72 - 1.57i)T + (1.40e3 + 2.43e3i)T^{2} \) |
| 59 | \( 1 - 84.2iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 92.0T + 3.72e3T^{2} \) |
| 67 | \( 1 + 66.7T + 4.48e3T^{2} \) |
| 71 | \( 1 + 115. iT - 5.04e3T^{2} \) |
| 73 | \( 1 + (19.6 - 33.9i)T + (-2.66e3 - 4.61e3i)T^{2} \) |
| 79 | \( 1 - 52.4T + 6.24e3T^{2} \) |
| 83 | \( 1 + (-9.25 - 5.34i)T + (3.44e3 + 5.96e3i)T^{2} \) |
| 89 | \( 1 + (61.9 - 35.7i)T + (3.96e3 - 6.85e3i)T^{2} \) |
| 97 | \( 1 + (-64.5 + 111. i)T + (-4.70e3 - 8.14e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.66998266780206505518524749961, −12.05276695096364287145625634688, −11.56442001031287976127342460966, −10.20143871050247893113495161513, −8.762429394620242112453965355732, −7.80675949797654481774675366991, −6.43193041833708757201129052969, −5.84278195595184119181079856445, −4.35691355855334114257210523855, −1.64969643893435849177214662094,
1.16791691819568940376444614424, 3.59155423673850803030814400671, 4.86062547685707077401047174702, 5.88374241666894215270412943534, 7.68360487261361136930867455065, 9.126556810022198323987754995280, 10.05744268565889010959241368527, 10.97079006492282661026864082030, 11.70157484311221586120910012197, 12.78469806046971236271341710586