L(s) = 1 | + 1.41i·2-s + (2.02 − 2.21i)3-s − 2.00·4-s + (−7.20 − 4.15i)5-s + (3.13 + 2.86i)6-s + (5.54 − 4.27i)7-s − 2.82i·8-s + (−0.819 − 8.96i)9-s + (5.88 − 10.1i)10-s + (9.13 − 5.27i)11-s + (−4.04 + 4.43i)12-s + (1.24 + 2.14i)13-s + (6.05 + 7.83i)14-s + (−23.7 + 7.55i)15-s + 4.00·16-s + (−27.5 − 15.8i)17-s + ⋯ |
L(s) = 1 | + 0.707i·2-s + (0.674 − 0.738i)3-s − 0.500·4-s + (−1.44 − 0.831i)5-s + (0.522 + 0.476i)6-s + (0.791 − 0.611i)7-s − 0.353i·8-s + (−0.0910 − 0.995i)9-s + (0.588 − 1.01i)10-s + (0.830 − 0.479i)11-s + (−0.337 + 0.369i)12-s + (0.0954 + 0.165i)13-s + (0.432 + 0.559i)14-s + (−1.58 + 0.503i)15-s + 0.250·16-s + (−1.61 − 0.935i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 126 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.488 + 0.872i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 126 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.488 + 0.872i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.13973 - 0.667744i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.13973 - 0.667744i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - 1.41iT \) |
| 3 | \( 1 + (-2.02 + 2.21i)T \) |
| 7 | \( 1 + (-5.54 + 4.27i)T \) |
good | 5 | \( 1 + (7.20 + 4.15i)T + (12.5 + 21.6i)T^{2} \) |
| 11 | \( 1 + (-9.13 + 5.27i)T + (60.5 - 104. i)T^{2} \) |
| 13 | \( 1 + (-1.24 - 2.14i)T + (-84.5 + 146. i)T^{2} \) |
| 17 | \( 1 + (27.5 + 15.8i)T + (144.5 + 250. i)T^{2} \) |
| 19 | \( 1 + (-6.85 - 11.8i)T + (-180.5 + 312. i)T^{2} \) |
| 23 | \( 1 + (-27.8 - 16.0i)T + (264.5 + 458. i)T^{2} \) |
| 29 | \( 1 + (-2.05 - 1.18i)T + (420.5 + 728. i)T^{2} \) |
| 31 | \( 1 - 20.7T + 961T^{2} \) |
| 37 | \( 1 + (-5.23 - 9.07i)T + (-684.5 + 1.18e3i)T^{2} \) |
| 41 | \( 1 + (43.1 - 24.9i)T + (840.5 - 1.45e3i)T^{2} \) |
| 43 | \( 1 + (-16.3 + 28.3i)T + (-924.5 - 1.60e3i)T^{2} \) |
| 47 | \( 1 - 41.5iT - 2.20e3T^{2} \) |
| 53 | \( 1 + (-67.8 - 39.1i)T + (1.40e3 + 2.43e3i)T^{2} \) |
| 59 | \( 1 + 71.7iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 66.1T + 3.72e3T^{2} \) |
| 67 | \( 1 + 24.9T + 4.48e3T^{2} \) |
| 71 | \( 1 + 23.3iT - 5.04e3T^{2} \) |
| 73 | \( 1 + (-19.5 + 33.9i)T + (-2.66e3 - 4.61e3i)T^{2} \) |
| 79 | \( 1 + 10.0T + 6.24e3T^{2} \) |
| 83 | \( 1 + (-95.0 - 54.8i)T + (3.44e3 + 5.96e3i)T^{2} \) |
| 89 | \( 1 + (-36.4 + 21.0i)T + (3.96e3 - 6.85e3i)T^{2} \) |
| 97 | \( 1 + (37.7 - 65.4i)T + (-4.70e3 - 8.14e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.22797059766953120170692921614, −11.95658848973617648104743207451, −11.30854036113885093216191391119, −9.158899914035295598447453827220, −8.478941427844273287454767413048, −7.60518037700712493655207260505, −6.76679707462799335195638715425, −4.78388687592185816172239468037, −3.71622664109638310700991208744, −0.938830310816403100808265153958,
2.49000128174386217903419136464, 3.85095038901968898432394453874, 4.71846229186220626787280125810, 6.99428417903623935623319645902, 8.345085456120411857360176743106, 8.952121795586506291681234568283, 10.49139396820355525124810705040, 11.21017715378081162202080494669, 11.91403498404725115688369070951, 13.29502737008958097344420318682