L(s) = 1 | + 1.41i·2-s + (1.16 + 2.76i)3-s − 2.00·4-s + (−7.41 − 4.28i)5-s + (−3.90 + 1.64i)6-s + (−6.97 − 0.609i)7-s − 2.82i·8-s + (−6.27 + 6.44i)9-s + (6.05 − 10.4i)10-s + (−6.10 + 3.52i)11-s + (−2.33 − 5.52i)12-s + (7.43 + 12.8i)13-s + (0.862 − 9.86i)14-s + (3.18 − 25.4i)15-s + 4.00·16-s + (12.4 + 7.18i)17-s + ⋯ |
L(s) = 1 | + 0.707i·2-s + (0.388 + 0.921i)3-s − 0.500·4-s + (−1.48 − 0.856i)5-s + (−0.651 + 0.274i)6-s + (−0.996 − 0.0871i)7-s − 0.353i·8-s + (−0.697 + 0.716i)9-s + (0.605 − 1.04i)10-s + (−0.555 + 0.320i)11-s + (−0.194 − 0.460i)12-s + (0.571 + 0.990i)13-s + (0.0615 − 0.704i)14-s + (0.212 − 1.69i)15-s + 0.250·16-s + (0.732 + 0.422i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 126 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.889 + 0.456i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 126 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.889 + 0.456i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.107815 - 0.446804i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.107815 - 0.446804i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - 1.41iT \) |
| 3 | \( 1 + (-1.16 - 2.76i)T \) |
| 7 | \( 1 + (6.97 + 0.609i)T \) |
good | 5 | \( 1 + (7.41 + 4.28i)T + (12.5 + 21.6i)T^{2} \) |
| 11 | \( 1 + (6.10 - 3.52i)T + (60.5 - 104. i)T^{2} \) |
| 13 | \( 1 + (-7.43 - 12.8i)T + (-84.5 + 146. i)T^{2} \) |
| 17 | \( 1 + (-12.4 - 7.18i)T + (144.5 + 250. i)T^{2} \) |
| 19 | \( 1 + (-9.66 - 16.7i)T + (-180.5 + 312. i)T^{2} \) |
| 23 | \( 1 + (34.0 + 19.6i)T + (264.5 + 458. i)T^{2} \) |
| 29 | \( 1 + (11.7 + 6.80i)T + (420.5 + 728. i)T^{2} \) |
| 31 | \( 1 + 24.1T + 961T^{2} \) |
| 37 | \( 1 + (-17.6 - 30.5i)T + (-684.5 + 1.18e3i)T^{2} \) |
| 41 | \( 1 + (-7.79 + 4.50i)T + (840.5 - 1.45e3i)T^{2} \) |
| 43 | \( 1 + (-32.4 + 56.2i)T + (-924.5 - 1.60e3i)T^{2} \) |
| 47 | \( 1 - 33.3iT - 2.20e3T^{2} \) |
| 53 | \( 1 + (52.4 + 30.2i)T + (1.40e3 + 2.43e3i)T^{2} \) |
| 59 | \( 1 - 72.3iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 7.98T + 3.72e3T^{2} \) |
| 67 | \( 1 + 83.6T + 4.48e3T^{2} \) |
| 71 | \( 1 - 61.0iT - 5.04e3T^{2} \) |
| 73 | \( 1 + (9.83 - 17.0i)T + (-2.66e3 - 4.61e3i)T^{2} \) |
| 79 | \( 1 + 10.1T + 6.24e3T^{2} \) |
| 83 | \( 1 + (-15.8 - 9.15i)T + (3.44e3 + 5.96e3i)T^{2} \) |
| 89 | \( 1 + (-40.0 + 23.1i)T + (3.96e3 - 6.85e3i)T^{2} \) |
| 97 | \( 1 + (49.1 - 85.1i)T + (-4.70e3 - 8.14e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.93879739827410230349341181936, −12.71435813310059516085299850399, −11.82513003859300177260991560722, −10.37065162184693094172708120571, −9.323164178553438619000780765937, −8.355471126167296807928307130131, −7.54869502374068320569314461222, −5.82932489180582909005089208187, −4.35439696280179632038498941790, −3.65220776744272501264004149972,
0.29790762281923147334261633199, 2.93920358906313300137690074186, 3.56712644400032756516180191562, 5.92081187892473819235821183235, 7.40446234154425018064550348989, 7.991942725493217772252440106007, 9.402056244602551148950177296397, 10.76138160481464293868464925003, 11.61443216101329723028686083405, 12.49533417353150447125414092162