L(s) = 1 | − i·3-s + (−2.91 − 2.91i)5-s + (3.51 + 3.51i)7-s − 9-s + (0.406 + 0.406i)11-s + (2 + 3i)13-s + (−2.91 + 2.91i)15-s + 2.81i·17-s + (−4.32 + 4.32i)19-s + (3.51 − 3.51i)21-s + 4·23-s + 12.0i·25-s + i·27-s − 3.83·29-s + (4.32 − 4.32i)31-s + ⋯ |
L(s) = 1 | − 0.577i·3-s + (−1.30 − 1.30i)5-s + (1.32 + 1.32i)7-s − 0.333·9-s + (0.122 + 0.122i)11-s + (0.554 + 0.832i)13-s + (−0.753 + 0.753i)15-s + 0.682i·17-s + (−0.991 + 0.991i)19-s + (0.766 − 0.766i)21-s + 0.834·23-s + 2.40i·25-s + 0.192i·27-s − 0.712·29-s + (0.776 − 0.776i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1248 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.957 - 0.289i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1248 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.957 - 0.289i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.367005994\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.367005994\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + iT \) |
| 13 | \( 1 + (-2 - 3i)T \) |
good | 5 | \( 1 + (2.91 + 2.91i)T + 5iT^{2} \) |
| 7 | \( 1 + (-3.51 - 3.51i)T + 7iT^{2} \) |
| 11 | \( 1 + (-0.406 - 0.406i)T + 11iT^{2} \) |
| 17 | \( 1 - 2.81iT - 17T^{2} \) |
| 19 | \( 1 + (4.32 - 4.32i)T - 19iT^{2} \) |
| 23 | \( 1 - 4T + 23T^{2} \) |
| 29 | \( 1 + 3.83T + 29T^{2} \) |
| 31 | \( 1 + (-4.32 + 4.32i)T - 31iT^{2} \) |
| 37 | \( 1 + (-1.81 + 1.81i)T - 37iT^{2} \) |
| 41 | \( 1 + (-6.10 - 6.10i)T + 41iT^{2} \) |
| 43 | \( 1 + 43T^{2} \) |
| 47 | \( 1 + (3.42 + 3.42i)T + 47iT^{2} \) |
| 53 | \( 1 + 1.18T + 53T^{2} \) |
| 59 | \( 1 + (-7.42 - 7.42i)T + 59iT^{2} \) |
| 61 | \( 1 - 9.02T + 61T^{2} \) |
| 67 | \( 1 + (-0.489 + 0.489i)T - 67iT^{2} \) |
| 71 | \( 1 + (-4.40 + 4.40i)T - 71iT^{2} \) |
| 73 | \( 1 + (-4.83 + 4.83i)T - 73iT^{2} \) |
| 79 | \( 1 + 7.66iT - 79T^{2} \) |
| 83 | \( 1 + (-6.61 + 6.61i)T - 83iT^{2} \) |
| 89 | \( 1 + (8.91 - 8.91i)T - 89iT^{2} \) |
| 97 | \( 1 + (9.85 + 9.85i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.283268915298219919430953161305, −8.689370165524390205651727079063, −8.172527619305224449043834363550, −7.68605965040860452093562387546, −6.33735182465244257937218489715, −5.44437764227710689600982927198, −4.58594758393311878844099207736, −3.86774908116993367854210003813, −2.13965353789861181745406504685, −1.23219661423541604084643899445,
0.68192284649187182172803140415, 2.68935246957197763312485301481, 3.68041980863432133355522531321, 4.30013530294707283287005981602, 5.16323363199478514122035327842, 6.68984066362376324568190264442, 7.21055709625015670229516978979, 8.026762169369924099403417299575, 8.563140285696626287162531192767, 9.958754630289912247852040599876