L(s) = 1 | − i·3-s + 1.41·5-s − 1.41i·7-s − 9-s − 13-s − 1.41i·15-s − 1.41i·19-s − 1.41·21-s + 2i·23-s + 1.00·25-s + i·27-s + 1.41i·31-s − 2.00i·35-s + i·39-s + 1.41·41-s + ⋯ |
L(s) = 1 | − i·3-s + 1.41·5-s − 1.41i·7-s − 9-s − 13-s − 1.41i·15-s − 1.41i·19-s − 1.41·21-s + 2i·23-s + 1.00·25-s + i·27-s + 1.41i·31-s − 2.00i·35-s + i·39-s + 1.41·41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1248 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1248 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.237933488\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.237933488\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + iT \) |
| 13 | \( 1 + T \) |
good | 5 | \( 1 - 1.41T + T^{2} \) |
| 7 | \( 1 + 1.41iT - T^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 + 1.41iT - T^{2} \) |
| 23 | \( 1 - 2iT - T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 - 1.41iT - T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 - 1.41T + T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( 1 + T^{2} \) |
| 67 | \( 1 + 1.41iT - T^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 - 1.41T + T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.593477993656940468115305850093, −9.080983891341659409637587681372, −7.75420656098609521500049161507, −7.19034173378948048609927652356, −6.56245862159902089965630904239, −5.57236404137647117963665766618, −4.78767446435944540161859955083, −3.27697713813077974469272519270, −2.19380044167029038823823344074, −1.14526597085907940660257118945,
2.22054860572870452195712263468, 2.67823078617822368121724589253, 4.20747543092371571245110635950, 5.18943903423088418241553756889, 5.83140670259967416911420751374, 6.34459563294790264528625793024, 7.913668964434451360218617702953, 8.793578220797358060691257982315, 9.387486045480286963215546183805, 9.997803497634161503938452659034