L(s) = 1 | + (0.965 − 0.258i)3-s + i·5-s + (0.707 + 1.22i)7-s + (0.866 − 0.499i)9-s + (−1.22 − 0.707i)11-s + (0.5 − 0.866i)13-s + (0.258 + 0.965i)15-s + (−0.866 + 0.5i)17-s + (1 + 0.999i)21-s + (0.707 − 0.707i)27-s + (0.866 + 0.5i)29-s − 1.41·31-s + (−1.36 − 0.366i)33-s + (−1.22 + 0.707i)35-s + (−0.5 + 0.866i)37-s + ⋯ |
L(s) = 1 | + (0.965 − 0.258i)3-s + i·5-s + (0.707 + 1.22i)7-s + (0.866 − 0.499i)9-s + (−1.22 − 0.707i)11-s + (0.5 − 0.866i)13-s + (0.258 + 0.965i)15-s + (−0.866 + 0.5i)17-s + (1 + 0.999i)21-s + (0.707 − 0.707i)27-s + (0.866 + 0.5i)29-s − 1.41·31-s + (−1.36 − 0.366i)33-s + (−1.22 + 0.707i)35-s + (−0.5 + 0.866i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1248 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.869 - 0.494i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1248 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.869 - 0.494i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.499151875\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.499151875\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.965 + 0.258i)T \) |
| 13 | \( 1 + (-0.5 + 0.866i)T \) |
good | 5 | \( 1 - iT - T^{2} \) |
| 7 | \( 1 + (-0.707 - 1.22i)T + (-0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (1.22 + 0.707i)T + (0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + 1.41T + T^{2} \) |
| 37 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (0.707 + 1.22i)T + (-0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 + iT - T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 - T + T^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 + 1.41iT - T^{2} \) |
| 89 | \( 1 + (1.73 + i)T + (0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.02313558393422197528781108822, −8.757764119539186606571599775961, −8.470045911418286728618948307619, −7.70722563692914368694142078066, −6.75346633663972020246785291154, −5.83751223132998090947862696697, −4.94331673497049803118806441458, −3.44323029011350608793954721525, −2.80183056313832240161191472221, −1.93757189278324880619761544474,
1.41576279146415904955649125061, 2.50235074310734571661476950077, 4.02087760884868305983525208963, 4.50196554131274759940503401264, 5.23859232873305156820574146131, 6.87262181630164356816789815802, 7.55423881548259952116864087837, 8.222808022760686758073967816785, 9.007964435724423960803062527754, 9.647794750459414932928416496053