L(s) = 1 | + (−0.5 − 0.866i)3-s − 3.82·5-s + (−1.41 + 2.44i)7-s + (−0.499 + 0.866i)9-s + (1.41 + 2.44i)11-s + (3.5 − 0.866i)13-s + (1.91 + 3.31i)15-s + (−2.91 + 5.04i)17-s + (3.41 − 5.91i)19-s + 2.82·21-s + (−3.41 − 5.91i)23-s + 9.65·25-s + 0.999·27-s + (1.91 + 3.31i)29-s − 9.65·31-s + ⋯ |
L(s) = 1 | + (−0.288 − 0.499i)3-s − 1.71·5-s + (−0.534 + 0.925i)7-s + (−0.166 + 0.288i)9-s + (0.426 + 0.738i)11-s + (0.970 − 0.240i)13-s + (0.494 + 0.856i)15-s + (−0.706 + 1.22i)17-s + (0.783 − 1.35i)19-s + 0.617·21-s + (−0.711 − 1.23i)23-s + 1.93·25-s + 0.192·27-s + (0.355 + 0.615i)29-s − 1.73·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1248 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0128 + 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1248 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0128 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.5926949289\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5926949289\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.5 + 0.866i)T \) |
| 13 | \( 1 + (-3.5 + 0.866i)T \) |
good | 5 | \( 1 + 3.82T + 5T^{2} \) |
| 7 | \( 1 + (1.41 - 2.44i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.41 - 2.44i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (2.91 - 5.04i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.41 + 5.91i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (3.41 + 5.91i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.91 - 3.31i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 9.65T + 31T^{2} \) |
| 37 | \( 1 + (4.32 + 7.49i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (0.914 + 1.58i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-5.41 + 9.37i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 1.17T + 47T^{2} \) |
| 53 | \( 1 - 1.82T + 53T^{2} \) |
| 59 | \( 1 + (-1.17 + 2.02i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (2.32 - 4.03i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (6.24 + 10.8i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-6.24 + 10.8i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 8.65T + 73T^{2} \) |
| 79 | \( 1 - 11.3T + 79T^{2} \) |
| 83 | \( 1 + 2.82T + 83T^{2} \) |
| 89 | \( 1 + (-3 - 5.19i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (2.65 - 4.60i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.069125200736470046428234251867, −8.769920256049043158527759045578, −7.80771803329757238262031230908, −7.02673341877336689790361661551, −6.35712889009891917075667111615, −5.27397499168114576207348072687, −4.16607645408182296330180197283, −3.42837811619914126840458832130, −2.09703253249814295918043911907, −0.33921593940667450902898889801,
0.985446964012410656360537575366, 3.43765456288364028271866006713, 3.64261683831574276193055063615, 4.50197957930930055043699671433, 5.71186252846950146092960673451, 6.71544001660177429882310631532, 7.50031350902209840024033591894, 8.185258411264936838984041844191, 9.114392057624419755283097239659, 9.931653033136251506233617736629