L(s) = 1 | + (−0.980 − 0.195i)2-s + (−0.923 + 0.382i)3-s + (0.923 + 0.382i)4-s + (0.750 − 1.81i)5-s + (0.980 − 0.195i)6-s + (−0.831 − 0.555i)8-s + (0.707 − 0.707i)9-s + (−1.08 + 1.63i)10-s + (1.53 + 0.636i)11-s − 12-s + (0.382 + 0.923i)13-s + 1.96i·15-s + (0.707 + 0.707i)16-s + (−0.831 + 0.555i)18-s + (1.38 − 1.38i)20-s + ⋯ |
L(s) = 1 | + (−0.980 − 0.195i)2-s + (−0.923 + 0.382i)3-s + (0.923 + 0.382i)4-s + (0.750 − 1.81i)5-s + (0.980 − 0.195i)6-s + (−0.831 − 0.555i)8-s + (0.707 − 0.707i)9-s + (−1.08 + 1.63i)10-s + (1.53 + 0.636i)11-s − 12-s + (0.382 + 0.923i)13-s + 1.96i·15-s + (0.707 + 0.707i)16-s + (−0.831 + 0.555i)18-s + (1.38 − 1.38i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1248 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.707 + 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1248 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.707 + 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6619657820\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6619657820\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.980 + 0.195i)T \) |
| 3 | \( 1 + (0.923 - 0.382i)T \) |
| 13 | \( 1 + (-0.382 - 0.923i)T \) |
good | 5 | \( 1 + (-0.750 + 1.81i)T + (-0.707 - 0.707i)T^{2} \) |
| 7 | \( 1 - iT^{2} \) |
| 11 | \( 1 + (-1.53 - 0.636i)T + (0.707 + 0.707i)T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 23 | \( 1 + iT^{2} \) |
| 29 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 41 | \( 1 + (-0.275 + 0.275i)T - iT^{2} \) |
| 43 | \( 1 + (-0.707 - 0.292i)T + (0.707 + 0.707i)T^{2} \) |
| 47 | \( 1 + 1.11iT - T^{2} \) |
| 53 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 59 | \( 1 + (0.750 - 1.81i)T + (-0.707 - 0.707i)T^{2} \) |
| 61 | \( 1 + (-1.30 + 0.541i)T + (0.707 - 0.707i)T^{2} \) |
| 67 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 71 | \( 1 + (1.17 + 1.17i)T + iT^{2} \) |
| 73 | \( 1 + iT^{2} \) |
| 79 | \( 1 + 0.765iT - T^{2} \) |
| 83 | \( 1 + (0.149 + 0.360i)T + (-0.707 + 0.707i)T^{2} \) |
| 89 | \( 1 + (0.785 + 0.785i)T + iT^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.579185156596404804249147309207, −9.145667377607849041553660063314, −8.663122544390598254300396669735, −7.33355179516347241443413809423, −6.37952360064506717692088075341, −5.79808803163866614011135494224, −4.60453708353403496448334618322, −3.97788354355894980431212907004, −1.81903210563687473961761923482, −1.10929336102877170491212163656,
1.33079025287623517033398211612, 2.53705093331018259052645651506, 3.63320628244920589932171756492, 5.57483003495860364875866847576, 6.12966372555435395326903567496, 6.69368247373671736447099314717, 7.29878912002064848496012105746, 8.264748342737464644221680049515, 9.448386048550000023231719555897, 10.05877250057892325804666699262