L(s) = 1 | + (−0.866 + 0.5i)3-s + 2.23·5-s + (−3.43 − 1.98i)7-s + (0.499 − 0.866i)9-s + (−0.252 − 0.436i)11-s + (−2.59 − 2.5i)13-s + (−1.93 + 1.11i)15-s + (−2.93 + 5.08i)17-s + (0.252 − 0.436i)19-s + 3.96·21-s + (4.43 + 7.68i)23-s + 0.999i·27-s + (−8.55 + 4.93i)29-s + 4.47i·31-s + (0.436 + 0.252i)33-s + ⋯ |
L(s) = 1 | + (−0.499 + 0.288i)3-s + 0.999·5-s + (−1.29 − 0.749i)7-s + (0.166 − 0.288i)9-s + (−0.0759 − 0.131i)11-s + (−0.720 − 0.693i)13-s + (−0.500 + 0.288i)15-s + (−0.712 + 1.23i)17-s + (0.0578 − 0.100i)19-s + 0.865·21-s + (0.925 + 1.60i)23-s + 0.192i·27-s + (−1.58 + 0.916i)29-s + 0.803i·31-s + (0.0759 + 0.0438i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1248 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.799 - 0.600i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1248 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.799 - 0.600i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.4317023040\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4317023040\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.866 - 0.5i)T \) |
| 13 | \( 1 + (2.59 + 2.5i)T \) |
good | 5 | \( 1 - 2.23T + 5T^{2} \) |
| 7 | \( 1 + (3.43 + 1.98i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (0.252 + 0.436i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (2.93 - 5.08i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.252 + 0.436i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-4.43 - 7.68i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (8.55 - 4.93i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 4.47iT - 31T^{2} \) |
| 37 | \( 1 + (-3.60 - 6.24i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-1.06 + 0.614i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (7.68 + 4.43i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 3.96iT - 47T^{2} \) |
| 53 | \( 1 + 7.87iT - 53T^{2} \) |
| 59 | \( 1 + (-1.22 + 2.12i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.866 - 0.5i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (0.976 + 1.69i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-4.30 - 2.48i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 13.1iT - 73T^{2} \) |
| 79 | \( 1 + 14T + 79T^{2} \) |
| 83 | \( 1 + 2.96T + 83T^{2} \) |
| 89 | \( 1 + (1.74 - 1.00i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (15 + 8.66i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.804942415755476974001372223977, −9.677853542753487209267644758590, −8.564316328803382131955625525598, −7.27167920315067793299640417753, −6.69371216752314106753361747489, −5.78478623873322907002185414105, −5.18360457647399166558150217970, −3.85653172864468330631580014359, −3.05007538994652375345312046521, −1.53993924587979476344884377189,
0.18239150485829562950863165791, 2.14425928133228512474777427670, 2.74047863521054067379539658868, 4.33445928343365356281356806243, 5.34284872112368530783519293628, 6.10976626157498070854227680736, 6.69748285271051738102838831015, 7.48778647612961986055395339900, 8.911800546088200342545841555583, 9.481379268056355377909047198624