Properties

Label 2-1248-1.1-c1-0-22
Degree $2$
Conductor $1248$
Sign $-1$
Analytic cond. $9.96533$
Root an. cond. $3.15679$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 1.23·5-s − 5.23·7-s + 9-s − 4.47·11-s − 13-s + 1.23·15-s + 4.47·17-s + 1.23·19-s − 5.23·21-s + 2.47·23-s − 3.47·25-s + 27-s − 8.47·29-s − 9.23·31-s − 4.47·33-s − 6.47·35-s − 4.47·37-s − 39-s − 9.23·41-s − 6.47·43-s + 1.23·45-s + 0.472·47-s + 20.4·49-s + 4.47·51-s + 0.472·53-s − 5.52·55-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.552·5-s − 1.97·7-s + 0.333·9-s − 1.34·11-s − 0.277·13-s + 0.319·15-s + 1.08·17-s + 0.283·19-s − 1.14·21-s + 0.515·23-s − 0.694·25-s + 0.192·27-s − 1.57·29-s − 1.65·31-s − 0.778·33-s − 1.09·35-s − 0.735·37-s − 0.160·39-s − 1.44·41-s − 0.986·43-s + 0.184·45-s + 0.0688·47-s + 2.91·49-s + 0.626·51-s + 0.0648·53-s − 0.745·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1248 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1248 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1248\)    =    \(2^{5} \cdot 3 \cdot 13\)
Sign: $-1$
Analytic conductor: \(9.96533\)
Root analytic conductor: \(3.15679\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1248,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
13 \( 1 + T \)
good5 \( 1 - 1.23T + 5T^{2} \)
7 \( 1 + 5.23T + 7T^{2} \)
11 \( 1 + 4.47T + 11T^{2} \)
17 \( 1 - 4.47T + 17T^{2} \)
19 \( 1 - 1.23T + 19T^{2} \)
23 \( 1 - 2.47T + 23T^{2} \)
29 \( 1 + 8.47T + 29T^{2} \)
31 \( 1 + 9.23T + 31T^{2} \)
37 \( 1 + 4.47T + 37T^{2} \)
41 \( 1 + 9.23T + 41T^{2} \)
43 \( 1 + 6.47T + 43T^{2} \)
47 \( 1 - 0.472T + 47T^{2} \)
53 \( 1 - 0.472T + 53T^{2} \)
59 \( 1 - 6.94T + 59T^{2} \)
61 \( 1 - 3.52T + 61T^{2} \)
67 \( 1 - 7.70T + 67T^{2} \)
71 \( 1 + 10T + 71T^{2} \)
73 \( 1 + 4.47T + 73T^{2} \)
79 \( 1 + 8.94T + 79T^{2} \)
83 \( 1 - 2.94T + 83T^{2} \)
89 \( 1 + 15.7T + 89T^{2} \)
97 \( 1 - 16.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.476155761854977191581152069695, −8.635111220184842423338907541804, −7.48809025159988600485210646224, −6.99974236517206921538421942345, −5.80997790946729817082150608454, −5.31114286938088814559651855698, −3.61941605358019194725051246803, −3.13518996426730008441148532214, −2.03561646954228996106126366448, 0, 2.03561646954228996106126366448, 3.13518996426730008441148532214, 3.61941605358019194725051246803, 5.31114286938088814559651855698, 5.80997790946729817082150608454, 6.99974236517206921538421942345, 7.48809025159988600485210646224, 8.635111220184842423338907541804, 9.476155761854977191581152069695

Graph of the $Z$-function along the critical line