Properties

Label 2-1248-1.1-c1-0-11
Degree $2$
Conductor $1248$
Sign $1$
Analytic cond. $9.96533$
Root an. cond. $3.15679$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 4.34·5-s − 1.07·7-s + 9-s − 3.41·11-s + 13-s + 4.34·15-s + 2·17-s + 1.07·19-s − 1.07·21-s + 2.15·23-s + 13.8·25-s + 27-s + 2·29-s + 5.75·31-s − 3.41·33-s − 4.68·35-s − 6.68·37-s + 39-s − 0.340·41-s + 10.8·43-s + 4.34·45-s − 7.41·47-s − 5.83·49-s + 2·51-s − 2.68·53-s − 14.8·55-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.94·5-s − 0.407·7-s + 0.333·9-s − 1.03·11-s + 0.277·13-s + 1.12·15-s + 0.485·17-s + 0.247·19-s − 0.235·21-s + 0.449·23-s + 2.76·25-s + 0.192·27-s + 0.371·29-s + 1.03·31-s − 0.595·33-s − 0.791·35-s − 1.09·37-s + 0.160·39-s − 0.0531·41-s + 1.65·43-s + 0.646·45-s − 1.08·47-s − 0.833·49-s + 0.280·51-s − 0.368·53-s − 2.00·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1248 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1248 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1248\)    =    \(2^{5} \cdot 3 \cdot 13\)
Sign: $1$
Analytic conductor: \(9.96533\)
Root analytic conductor: \(3.15679\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1248,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.732673527\)
\(L(\frac12)\) \(\approx\) \(2.732673527\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
13 \( 1 - T \)
good5 \( 1 - 4.34T + 5T^{2} \)
7 \( 1 + 1.07T + 7T^{2} \)
11 \( 1 + 3.41T + 11T^{2} \)
17 \( 1 - 2T + 17T^{2} \)
19 \( 1 - 1.07T + 19T^{2} \)
23 \( 1 - 2.15T + 23T^{2} \)
29 \( 1 - 2T + 29T^{2} \)
31 \( 1 - 5.75T + 31T^{2} \)
37 \( 1 + 6.68T + 37T^{2} \)
41 \( 1 + 0.340T + 41T^{2} \)
43 \( 1 - 10.8T + 43T^{2} \)
47 \( 1 + 7.41T + 47T^{2} \)
53 \( 1 + 2.68T + 53T^{2} \)
59 \( 1 - 9.26T + 59T^{2} \)
61 \( 1 + 4.52T + 61T^{2} \)
67 \( 1 + 15.9T + 67T^{2} \)
71 \( 1 + 5.26T + 71T^{2} \)
73 \( 1 - 14.6T + 73T^{2} \)
79 \( 1 + 12T + 79T^{2} \)
83 \( 1 + 1.26T + 83T^{2} \)
89 \( 1 + 13.0T + 89T^{2} \)
97 \( 1 - 6.68T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.771624211229250954378068475530, −9.022670606928706011193809618885, −8.242380823516333586321271767610, −7.15848377428148763256013421456, −6.29353146137862476426063643954, −5.56345335412064371411570317002, −4.75674760138880651568274604629, −3.15597612582686089814662180394, −2.50171596612514574494959246919, −1.36957983056257743767875835517, 1.36957983056257743767875835517, 2.50171596612514574494959246919, 3.15597612582686089814662180394, 4.75674760138880651568274604629, 5.56345335412064371411570317002, 6.29353146137862476426063643954, 7.15848377428148763256013421456, 8.242380823516333586321271767610, 9.022670606928706011193809618885, 9.771624211229250954378068475530

Graph of the $Z$-function along the critical line