Properties

Label 2-121968-1.1-c1-0-134
Degree $2$
Conductor $121968$
Sign $-1$
Analytic cond. $973.919$
Root an. cond. $31.2076$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s + 7-s − 4·13-s + 6·17-s + 2·19-s + 2·23-s − 25-s + 2·29-s − 8·31-s + 2·35-s − 2·37-s − 6·41-s − 2·43-s − 10·47-s + 49-s + 14·53-s − 12·61-s − 8·65-s + 8·67-s + 6·71-s − 6·73-s + 4·79-s − 4·83-s + 12·85-s + 12·89-s − 4·91-s + 4·95-s + ⋯
L(s)  = 1  + 0.894·5-s + 0.377·7-s − 1.10·13-s + 1.45·17-s + 0.458·19-s + 0.417·23-s − 1/5·25-s + 0.371·29-s − 1.43·31-s + 0.338·35-s − 0.328·37-s − 0.937·41-s − 0.304·43-s − 1.45·47-s + 1/7·49-s + 1.92·53-s − 1.53·61-s − 0.992·65-s + 0.977·67-s + 0.712·71-s − 0.702·73-s + 0.450·79-s − 0.439·83-s + 1.30·85-s + 1.27·89-s − 0.419·91-s + 0.410·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 121968 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 121968 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(121968\)    =    \(2^{4} \cdot 3^{2} \cdot 7 \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(973.919\)
Root analytic conductor: \(31.2076\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 121968,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - T \)
11 \( 1 \)
good5 \( 1 - 2 T + p T^{2} \)
13 \( 1 + 4 T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
23 \( 1 - 2 T + p T^{2} \)
29 \( 1 - 2 T + p T^{2} \)
31 \( 1 + 8 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 + 2 T + p T^{2} \)
47 \( 1 + 10 T + p T^{2} \)
53 \( 1 - 14 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 + 12 T + p T^{2} \)
67 \( 1 - 8 T + p T^{2} \)
71 \( 1 - 6 T + p T^{2} \)
73 \( 1 + 6 T + p T^{2} \)
79 \( 1 - 4 T + p T^{2} \)
83 \( 1 + 4 T + p T^{2} \)
89 \( 1 - 12 T + p T^{2} \)
97 \( 1 - 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.83126365763811, −13.27733163713962, −12.93986775563850, −12.25033072625798, −11.88639900043994, −11.56231318249591, −10.65050072844771, −10.43265584783417, −9.827558292434163, −9.511060457217731, −9.046235814167546, −8.336201713915746, −7.848878782927293, −7.346165493495328, −6.909094361623593, −6.242476979739490, −5.641389363010210, −5.096904636596857, −5.043537978563459, −4.035456499633209, −3.419056078635542, −2.889317679954381, −2.136418914331603, −1.671231210267846, −0.9840330072506921, 0, 0.9840330072506921, 1.671231210267846, 2.136418914331603, 2.889317679954381, 3.419056078635542, 4.035456499633209, 5.043537978563459, 5.096904636596857, 5.641389363010210, 6.242476979739490, 6.909094361623593, 7.346165493495328, 7.848878782927293, 8.336201713915746, 9.046235814167546, 9.511060457217731, 9.827558292434163, 10.43265584783417, 10.65050072844771, 11.56231318249591, 11.88639900043994, 12.25033072625798, 12.93986775563850, 13.27733163713962, 13.83126365763811

Graph of the $Z$-function along the critical line