Properties

Label 2-121968-1.1-c1-0-103
Degree $2$
Conductor $121968$
Sign $1$
Analytic cond. $973.919$
Root an. cond. $31.2076$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·5-s − 7-s + 3·13-s + 6·17-s + 19-s − 4·23-s + 4·25-s + 5·29-s + 4·31-s − 3·35-s + 5·37-s + 2·41-s + 6·43-s − 47-s + 49-s + 2·53-s + 7·59-s + 14·61-s + 9·65-s − 67-s + 6·71-s + 17·73-s + 2·79-s − 14·83-s + 18·85-s + 6·89-s − 3·91-s + ⋯
L(s)  = 1  + 1.34·5-s − 0.377·7-s + 0.832·13-s + 1.45·17-s + 0.229·19-s − 0.834·23-s + 4/5·25-s + 0.928·29-s + 0.718·31-s − 0.507·35-s + 0.821·37-s + 0.312·41-s + 0.914·43-s − 0.145·47-s + 1/7·49-s + 0.274·53-s + 0.911·59-s + 1.79·61-s + 1.11·65-s − 0.122·67-s + 0.712·71-s + 1.98·73-s + 0.225·79-s − 1.53·83-s + 1.95·85-s + 0.635·89-s − 0.314·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 121968 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 121968 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(121968\)    =    \(2^{4} \cdot 3^{2} \cdot 7 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(973.919\)
Root analytic conductor: \(31.2076\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 121968,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.947396447\)
\(L(\frac12)\) \(\approx\) \(4.947396447\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + T \)
11 \( 1 \)
good5 \( 1 - 3 T + p T^{2} \)
13 \( 1 - 3 T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
19 \( 1 - T + p T^{2} \)
23 \( 1 + 4 T + p T^{2} \)
29 \( 1 - 5 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 - 5 T + p T^{2} \)
41 \( 1 - 2 T + p T^{2} \)
43 \( 1 - 6 T + p T^{2} \)
47 \( 1 + T + p T^{2} \)
53 \( 1 - 2 T + p T^{2} \)
59 \( 1 - 7 T + p T^{2} \)
61 \( 1 - 14 T + p T^{2} \)
67 \( 1 + T + p T^{2} \)
71 \( 1 - 6 T + p T^{2} \)
73 \( 1 - 17 T + p T^{2} \)
79 \( 1 - 2 T + p T^{2} \)
83 \( 1 + 14 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.67973704392012, −13.08056875234464, −12.63062799866005, −12.26097568434372, −11.53908269034286, −11.20923385001168, −10.37871919812353, −10.05307099467531, −9.838538369449798, −9.247638704131716, −8.703873830835515, −8.124281204393306, −7.724616897173829, −6.957800228544426, −6.381646293664119, −6.074541800910392, −5.539799021996774, −5.171502702796442, −4.329365572598832, −3.737658367118295, −3.165337674276545, −2.470564807901006, −2.032090391256499, −1.086185568412033, −0.8016709650142065, 0.8016709650142065, 1.086185568412033, 2.032090391256499, 2.470564807901006, 3.165337674276545, 3.737658367118295, 4.329365572598832, 5.171502702796442, 5.539799021996774, 6.074541800910392, 6.381646293664119, 6.957800228544426, 7.724616897173829, 8.124281204393306, 8.703873830835515, 9.247638704131716, 9.838538369449798, 10.05307099467531, 10.37871919812353, 11.20923385001168, 11.53908269034286, 12.26097568434372, 12.63062799866005, 13.08056875234464, 13.67973704392012

Graph of the $Z$-function along the critical line