Properties

Label 2-121968-1.1-c1-0-100
Degree $2$
Conductor $121968$
Sign $-1$
Analytic cond. $973.919$
Root an. cond. $31.2076$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·5-s − 7-s + 2·13-s + 6·17-s + 2·19-s − 2·23-s + 11·25-s + 6·29-s + 4·35-s − 10·37-s + 2·41-s − 10·43-s + 10·47-s + 49-s − 4·53-s + 4·59-s + 10·61-s − 8·65-s − 12·67-s + 10·71-s − 8·73-s + 4·79-s + 12·83-s − 24·85-s − 2·89-s − 2·91-s − 8·95-s + ⋯
L(s)  = 1  − 1.78·5-s − 0.377·7-s + 0.554·13-s + 1.45·17-s + 0.458·19-s − 0.417·23-s + 11/5·25-s + 1.11·29-s + 0.676·35-s − 1.64·37-s + 0.312·41-s − 1.52·43-s + 1.45·47-s + 1/7·49-s − 0.549·53-s + 0.520·59-s + 1.28·61-s − 0.992·65-s − 1.46·67-s + 1.18·71-s − 0.936·73-s + 0.450·79-s + 1.31·83-s − 2.60·85-s − 0.211·89-s − 0.209·91-s − 0.820·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 121968 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 121968 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(121968\)    =    \(2^{4} \cdot 3^{2} \cdot 7 \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(973.919\)
Root analytic conductor: \(31.2076\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 121968,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + T \)
11 \( 1 \)
good5 \( 1 + 4 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
23 \( 1 + 2 T + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 + 10 T + p T^{2} \)
41 \( 1 - 2 T + p T^{2} \)
43 \( 1 + 10 T + p T^{2} \)
47 \( 1 - 10 T + p T^{2} \)
53 \( 1 + 4 T + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 - 10 T + p T^{2} \)
67 \( 1 + 12 T + p T^{2} \)
71 \( 1 - 10 T + p T^{2} \)
73 \( 1 + 8 T + p T^{2} \)
79 \( 1 - 4 T + p T^{2} \)
83 \( 1 - 12 T + p T^{2} \)
89 \( 1 + 2 T + p T^{2} \)
97 \( 1 - 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.99299376712250, −13.22523766515511, −12.67546123568260, −12.21620950852012, −11.80442896561229, −11.66795629009277, −10.89442516359667, −10.35161307805214, −10.12822825969642, −9.323524366144948, −8.700100309007184, −8.404130723208905, −7.778014521053650, −7.528994521633192, −6.880410316414651, −6.459514683474224, −5.702409730715024, −5.135306900606736, −4.621585279629182, −3.885969230387221, −3.497628061550424, −3.211408543585519, −2.394331228852631, −1.331034518973831, −0.7904478143742765, 0, 0.7904478143742765, 1.331034518973831, 2.394331228852631, 3.211408543585519, 3.497628061550424, 3.885969230387221, 4.621585279629182, 5.135306900606736, 5.702409730715024, 6.459514683474224, 6.880410316414651, 7.528994521633192, 7.778014521053650, 8.404130723208905, 8.700100309007184, 9.323524366144948, 10.12822825969642, 10.35161307805214, 10.89442516359667, 11.66795629009277, 11.80442896561229, 12.21620950852012, 12.67546123568260, 13.22523766515511, 13.99299376712250

Graph of the $Z$-function along the critical line