Properties

Label 2-1218-1.1-c1-0-20
Degree $2$
Conductor $1218$
Sign $1$
Analytic cond. $9.72577$
Root an. cond. $3.11861$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 1.34·5-s + 6-s + 7-s + 8-s + 9-s + 1.34·10-s + 4.09·11-s + 12-s − 3.44·13-s + 14-s + 1.34·15-s + 16-s + 2.65·17-s + 18-s + 2.09·19-s + 1.34·20-s + 21-s + 4.09·22-s − 8.09·23-s + 24-s − 3.19·25-s − 3.44·26-s + 27-s + 28-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 0.5·4-s + 0.601·5-s + 0.408·6-s + 0.377·7-s + 0.353·8-s + 0.333·9-s + 0.424·10-s + 1.23·11-s + 0.288·12-s − 0.954·13-s + 0.267·14-s + 0.347·15-s + 0.250·16-s + 0.644·17-s + 0.235·18-s + 0.481·19-s + 0.300·20-s + 0.218·21-s + 0.873·22-s − 1.68·23-s + 0.204·24-s − 0.638·25-s − 0.674·26-s + 0.192·27-s + 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1218 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1218 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1218\)    =    \(2 \cdot 3 \cdot 7 \cdot 29\)
Sign: $1$
Analytic conductor: \(9.72577\)
Root analytic conductor: \(3.11861\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1218,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.687476103\)
\(L(\frac12)\) \(\approx\) \(3.687476103\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 - T \)
7 \( 1 - T \)
29 \( 1 + T \)
good5 \( 1 - 1.34T + 5T^{2} \)
11 \( 1 - 4.09T + 11T^{2} \)
13 \( 1 + 3.44T + 13T^{2} \)
17 \( 1 - 2.65T + 17T^{2} \)
19 \( 1 - 2.09T + 19T^{2} \)
23 \( 1 + 8.09T + 23T^{2} \)
31 \( 1 + 3.34T + 31T^{2} \)
37 \( 1 + 4.78T + 37T^{2} \)
41 \( 1 - 10.8T + 41T^{2} \)
43 \( 1 - 8.19T + 43T^{2} \)
47 \( 1 - 5.44T + 47T^{2} \)
53 \( 1 + 8.09T + 53T^{2} \)
59 \( 1 + 8.12T + 59T^{2} \)
61 \( 1 + 2.19T + 61T^{2} \)
67 \( 1 - 10.0T + 67T^{2} \)
71 \( 1 + 11.5T + 71T^{2} \)
73 \( 1 - 0.752T + 73T^{2} \)
79 \( 1 + 79T^{2} \)
83 \( 1 + 2.75T + 83T^{2} \)
89 \( 1 + 8.16T + 89T^{2} \)
97 \( 1 - 8.94T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.640031262094455284934456938995, −9.116731630154823689914095857978, −7.86234208456716263717901181062, −7.34726062446322107183241182200, −6.21085562553299244012248502863, −5.56073082875701947241359741470, −4.41534629123774776951750642638, −3.68559072449978358320384621959, −2.46043114846623691769507837514, −1.55032299970274012195778986266, 1.55032299970274012195778986266, 2.46043114846623691769507837514, 3.68559072449978358320384621959, 4.41534629123774776951750642638, 5.56073082875701947241359741470, 6.21085562553299244012248502863, 7.34726062446322107183241182200, 7.86234208456716263717901181062, 9.116731630154823689914095857978, 9.640031262094455284934456938995

Graph of the $Z$-function along the critical line