Properties

Label 2-1218-1.1-c1-0-14
Degree $2$
Conductor $1218$
Sign $1$
Analytic cond. $9.72577$
Root an. cond. $3.11861$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s + 4.22·5-s − 6-s − 7-s − 8-s + 9-s − 4.22·10-s + 4.87·11-s + 12-s + 0.642·13-s + 14-s + 4.22·15-s + 16-s − 4.22·17-s − 18-s − 3.58·19-s + 4.22·20-s − 21-s − 4.87·22-s + 6.30·23-s − 24-s + 12.8·25-s − 0.642·26-s + 27-s − 28-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 0.5·4-s + 1.89·5-s − 0.408·6-s − 0.377·7-s − 0.353·8-s + 0.333·9-s − 1.33·10-s + 1.46·11-s + 0.288·12-s + 0.178·13-s + 0.267·14-s + 1.09·15-s + 0.250·16-s − 1.02·17-s − 0.235·18-s − 0.823·19-s + 0.945·20-s − 0.218·21-s − 1.03·22-s + 1.31·23-s − 0.204·24-s + 2.57·25-s − 0.125·26-s + 0.192·27-s − 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1218 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1218 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1218\)    =    \(2 \cdot 3 \cdot 7 \cdot 29\)
Sign: $1$
Analytic conductor: \(9.72577\)
Root analytic conductor: \(3.11861\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1218,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.129231490\)
\(L(\frac12)\) \(\approx\) \(2.129231490\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 - T \)
7 \( 1 + T \)
29 \( 1 + T \)
good5 \( 1 - 4.22T + 5T^{2} \)
11 \( 1 - 4.87T + 11T^{2} \)
13 \( 1 - 0.642T + 13T^{2} \)
17 \( 1 + 4.22T + 17T^{2} \)
19 \( 1 + 3.58T + 19T^{2} \)
23 \( 1 - 6.30T + 23T^{2} \)
31 \( 1 - 1.77T + 31T^{2} \)
37 \( 1 + 8.76T + 37T^{2} \)
41 \( 1 + 6.94T + 41T^{2} \)
43 \( 1 - 11.1T + 43T^{2} \)
47 \( 1 + 7.24T + 47T^{2} \)
53 \( 1 - 9.58T + 53T^{2} \)
59 \( 1 + 12.3T + 59T^{2} \)
61 \( 1 + 7.74T + 61T^{2} \)
67 \( 1 + 1.01T + 67T^{2} \)
71 \( 1 + 6.56T + 71T^{2} \)
73 \( 1 + 0.789T + 73T^{2} \)
79 \( 1 - 6.56T + 79T^{2} \)
83 \( 1 + 2.78T + 83T^{2} \)
89 \( 1 + 9.51T + 89T^{2} \)
97 \( 1 - 13.7T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.412411653948227458990452561346, −9.092275201936308125980761881909, −8.580891721443566983897182138654, −7.00641812006070369278443026186, −6.59459694265716908558472022709, −5.83894099567718637845665461046, −4.58572642816542057374062833889, −3.21270725998995033465900631298, −2.16084041468963136460077932284, −1.36407877951953651736421705957, 1.36407877951953651736421705957, 2.16084041468963136460077932284, 3.21270725998995033465900631298, 4.58572642816542057374062833889, 5.83894099567718637845665461046, 6.59459694265716908558472022709, 7.00641812006070369278443026186, 8.580891721443566983897182138654, 9.092275201936308125980761881909, 9.412411653948227458990452561346

Graph of the $Z$-function along the critical line