L(s) = 1 | + (−0.5 − 0.866i)3-s + (−2 − 3.46i)5-s + (1 − 1.73i)9-s + 3·11-s + (1 − 1.73i)13-s + (−1.99 + 3.46i)15-s + (−1 − 1.73i)17-s + (0.5 − 4.33i)19-s + (3 − 5.19i)23-s + (−5.49 + 9.52i)25-s − 5·27-s + (−2 + 3.46i)29-s + 10·31-s + (−1.5 − 2.59i)33-s − 2·37-s + ⋯ |
L(s) = 1 | + (−0.288 − 0.499i)3-s + (−0.894 − 1.54i)5-s + (0.333 − 0.577i)9-s + 0.904·11-s + (0.277 − 0.480i)13-s + (−0.516 + 0.894i)15-s + (−0.242 − 0.420i)17-s + (0.114 − 0.993i)19-s + (0.625 − 1.08i)23-s + (−1.09 + 1.90i)25-s − 0.962·27-s + (−0.371 + 0.643i)29-s + 1.79·31-s + (−0.261 − 0.452i)33-s − 0.328·37-s + ⋯ |
Λ(s)=(=(1216s/2ΓC(s)L(s)(−0.980+0.194i)Λ(2−s)
Λ(s)=(=(1216s/2ΓC(s+1/2)L(s)(−0.980+0.194i)Λ(1−s)
Degree: |
2 |
Conductor: |
1216
= 26⋅19
|
Sign: |
−0.980+0.194i
|
Analytic conductor: |
9.70980 |
Root analytic conductor: |
3.11605 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1216(577,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1216, ( :1/2), −0.980+0.194i)
|
Particular Values
L(1) |
≈ |
1.110586379 |
L(21) |
≈ |
1.110586379 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 19 | 1+(−0.5+4.33i)T |
good | 3 | 1+(0.5+0.866i)T+(−1.5+2.59i)T2 |
| 5 | 1+(2+3.46i)T+(−2.5+4.33i)T2 |
| 7 | 1+7T2 |
| 11 | 1−3T+11T2 |
| 13 | 1+(−1+1.73i)T+(−6.5−11.2i)T2 |
| 17 | 1+(1+1.73i)T+(−8.5+14.7i)T2 |
| 23 | 1+(−3+5.19i)T+(−11.5−19.9i)T2 |
| 29 | 1+(2−3.46i)T+(−14.5−25.1i)T2 |
| 31 | 1−10T+31T2 |
| 37 | 1+2T+37T2 |
| 41 | 1+(4.5+7.79i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−2−3.46i)T+(−21.5+37.2i)T2 |
| 47 | 1+(6−10.3i)T+(−23.5−40.7i)T2 |
| 53 | 1+(1−1.73i)T+(−26.5−45.8i)T2 |
| 59 | 1+(−0.5−0.866i)T+(−29.5+51.0i)T2 |
| 61 | 1+(4−6.92i)T+(−30.5−52.8i)T2 |
| 67 | 1+(4.5−7.79i)T+(−33.5−58.0i)T2 |
| 71 | 1+(3+5.19i)T+(−35.5+61.4i)T2 |
| 73 | 1+(−4.5−7.79i)T+(−36.5+63.2i)T2 |
| 79 | 1+(2+3.46i)T+(−39.5+68.4i)T2 |
| 83 | 1+5T+83T2 |
| 89 | 1+(−9+15.5i)T+(−44.5−77.0i)T2 |
| 97 | 1+(0.5+0.866i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.948549508496821513849176904799, −8.788506542317774987935002109008, −7.70415298038578573845057256038, −6.91176462577580700595313155801, −6.06649326926350063125449392390, −4.84266368455744552217499572239, −4.36370824066764174070192684977, −3.19350881248401727017421363242, −1.33760290872410049724095802904, −0.55372918428696028243036519220,
1.84443473513052294899388421909, 3.31263948021534646629842438332, 3.88356393907147498616077250815, 4.83491829718995064412919922657, 6.18918864564920868474958882471, 6.73075461733201898288233715476, 7.64794508068527693644007941078, 8.287773417794300723168477318689, 9.588603199068747606250465893550, 10.19047343942992710068432091141