L(s) = 1 | + (−0.5 − 0.866i)3-s + (−2 − 3.46i)5-s + (1 − 1.73i)9-s + 3·11-s + (1 − 1.73i)13-s + (−1.99 + 3.46i)15-s + (−1 − 1.73i)17-s + (0.5 − 4.33i)19-s + (3 − 5.19i)23-s + (−5.49 + 9.52i)25-s − 5·27-s + (−2 + 3.46i)29-s + 10·31-s + (−1.5 − 2.59i)33-s − 2·37-s + ⋯ |
L(s) = 1 | + (−0.288 − 0.499i)3-s + (−0.894 − 1.54i)5-s + (0.333 − 0.577i)9-s + 0.904·11-s + (0.277 − 0.480i)13-s + (−0.516 + 0.894i)15-s + (−0.242 − 0.420i)17-s + (0.114 − 0.993i)19-s + (0.625 − 1.08i)23-s + (−1.09 + 1.90i)25-s − 0.962·27-s + (−0.371 + 0.643i)29-s + 1.79·31-s + (−0.261 − 0.452i)33-s − 0.328·37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1216 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.980 + 0.194i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1216 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.980 + 0.194i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.110586379\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.110586379\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 19 | \( 1 + (-0.5 + 4.33i)T \) |
good | 3 | \( 1 + (0.5 + 0.866i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (2 + 3.46i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + 7T^{2} \) |
| 11 | \( 1 - 3T + 11T^{2} \) |
| 13 | \( 1 + (-1 + 1.73i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (1 + 1.73i)T + (-8.5 + 14.7i)T^{2} \) |
| 23 | \( 1 + (-3 + 5.19i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (2 - 3.46i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 10T + 31T^{2} \) |
| 37 | \( 1 + 2T + 37T^{2} \) |
| 41 | \( 1 + (4.5 + 7.79i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-2 - 3.46i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (6 - 10.3i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (1 - 1.73i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-0.5 - 0.866i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (4 - 6.92i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (4.5 - 7.79i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (3 + 5.19i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-4.5 - 7.79i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (2 + 3.46i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 5T + 83T^{2} \) |
| 89 | \( 1 + (-9 + 15.5i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (0.5 + 0.866i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.948549508496821513849176904799, −8.788506542317774987935002109008, −7.70415298038578573845057256038, −6.91176462577580700595313155801, −6.06649326926350063125449392390, −4.84266368455744552217499572239, −4.36370824066764174070192684977, −3.19350881248401727017421363242, −1.33760290872410049724095802904, −0.55372918428696028243036519220,
1.84443473513052294899388421909, 3.31263948021534646629842438332, 3.88356393907147498616077250815, 4.83491829718995064412919922657, 6.18918864564920868474958882471, 6.73075461733201898288233715476, 7.64794508068527693644007941078, 8.287773417794300723168477318689, 9.588603199068747606250465893550, 10.19047343942992710068432091141