Properties

Label 2-1216-19.18-c2-0-59
Degree $2$
Conductor $1216$
Sign $1$
Analytic cond. $33.1336$
Root an. cond. $5.75617$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9·5-s + 5·7-s + 9·9-s + 3·11-s + 15·17-s − 19·19-s + 30·23-s + 56·25-s + 45·35-s − 85·43-s + 81·45-s − 75·47-s − 24·49-s + 27·55-s − 103·61-s + 45·63-s − 25·73-s + 15·77-s + 81·81-s + 90·83-s + 135·85-s − 171·95-s + 27·99-s + 102·101-s + 270·115-s + 75·119-s + ⋯
L(s)  = 1  + 9/5·5-s + 5/7·7-s + 9-s + 3/11·11-s + 0.882·17-s − 19-s + 1.30·23-s + 2.23·25-s + 9/7·35-s − 1.97·43-s + 9/5·45-s − 1.59·47-s − 0.489·49-s + 0.490·55-s − 1.68·61-s + 5/7·63-s − 0.342·73-s + 0.194·77-s + 81-s + 1.08·83-s + 1.58·85-s − 9/5·95-s + 3/11·99-s + 1.00·101-s + 2.34·115-s + 0.630·119-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1216 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1216 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1216\)    =    \(2^{6} \cdot 19\)
Sign: $1$
Analytic conductor: \(33.1336\)
Root analytic conductor: \(5.75617\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: $\chi_{1216} (1025, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1216,\ (\ :1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(3.480866159\)
\(L(\frac12)\) \(\approx\) \(3.480866159\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
19 \( 1 + p T \)
good3 \( ( 1 - p T )( 1 + p T ) \)
5 \( 1 - 9 T + p^{2} T^{2} \)
7 \( 1 - 5 T + p^{2} T^{2} \)
11 \( 1 - 3 T + p^{2} T^{2} \)
13 \( ( 1 - p T )( 1 + p T ) \)
17 \( 1 - 15 T + p^{2} T^{2} \)
23 \( 1 - 30 T + p^{2} T^{2} \)
29 \( ( 1 - p T )( 1 + p T ) \)
31 \( ( 1 - p T )( 1 + p T ) \)
37 \( ( 1 - p T )( 1 + p T ) \)
41 \( ( 1 - p T )( 1 + p T ) \)
43 \( 1 + 85 T + p^{2} T^{2} \)
47 \( 1 + 75 T + p^{2} T^{2} \)
53 \( ( 1 - p T )( 1 + p T ) \)
59 \( ( 1 - p T )( 1 + p T ) \)
61 \( 1 + 103 T + p^{2} T^{2} \)
67 \( ( 1 - p T )( 1 + p T ) \)
71 \( ( 1 - p T )( 1 + p T ) \)
73 \( 1 + 25 T + p^{2} T^{2} \)
79 \( ( 1 - p T )( 1 + p T ) \)
83 \( 1 - 90 T + p^{2} T^{2} \)
89 \( ( 1 - p T )( 1 + p T ) \)
97 \( ( 1 - p T )( 1 + p T ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.617769548368163634254218158588, −8.905780799669726346291639114102, −7.950721780379256626396910939638, −6.84561280985131032950905934575, −6.28064280890198498089936432599, −5.21575972898535996476804658227, −4.66152478919190597730094087242, −3.19587303235678236099511865911, −1.90008376656696799905281197083, −1.32086676398853590177841162574, 1.32086676398853590177841162574, 1.90008376656696799905281197083, 3.19587303235678236099511865911, 4.66152478919190597730094087242, 5.21575972898535996476804658227, 6.28064280890198498089936432599, 6.84561280985131032950905934575, 7.950721780379256626396910939638, 8.905780799669726346291639114102, 9.617769548368163634254218158588

Graph of the $Z$-function along the critical line