L(s) = 1 | + 9·5-s + 5·7-s + 9·9-s + 3·11-s + 15·17-s − 19·19-s + 30·23-s + 56·25-s + 45·35-s − 85·43-s + 81·45-s − 75·47-s − 24·49-s + 27·55-s − 103·61-s + 45·63-s − 25·73-s + 15·77-s + 81·81-s + 90·83-s + 135·85-s − 171·95-s + 27·99-s + 102·101-s + 270·115-s + 75·119-s + ⋯ |
L(s) = 1 | + 9/5·5-s + 5/7·7-s + 9-s + 3/11·11-s + 0.882·17-s − 19-s + 1.30·23-s + 2.23·25-s + 9/7·35-s − 1.97·43-s + 9/5·45-s − 1.59·47-s − 0.489·49-s + 0.490·55-s − 1.68·61-s + 5/7·63-s − 0.342·73-s + 0.194·77-s + 81-s + 1.08·83-s + 1.58·85-s − 9/5·95-s + 3/11·99-s + 1.00·101-s + 2.34·115-s + 0.630·119-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1216 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1216 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(3.480866159\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.480866159\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 19 | \( 1 + p T \) |
good | 3 | \( ( 1 - p T )( 1 + p T ) \) |
| 5 | \( 1 - 9 T + p^{2} T^{2} \) |
| 7 | \( 1 - 5 T + p^{2} T^{2} \) |
| 11 | \( 1 - 3 T + p^{2} T^{2} \) |
| 13 | \( ( 1 - p T )( 1 + p T ) \) |
| 17 | \( 1 - 15 T + p^{2} T^{2} \) |
| 23 | \( 1 - 30 T + p^{2} T^{2} \) |
| 29 | \( ( 1 - p T )( 1 + p T ) \) |
| 31 | \( ( 1 - p T )( 1 + p T ) \) |
| 37 | \( ( 1 - p T )( 1 + p T ) \) |
| 41 | \( ( 1 - p T )( 1 + p T ) \) |
| 43 | \( 1 + 85 T + p^{2} T^{2} \) |
| 47 | \( 1 + 75 T + p^{2} T^{2} \) |
| 53 | \( ( 1 - p T )( 1 + p T ) \) |
| 59 | \( ( 1 - p T )( 1 + p T ) \) |
| 61 | \( 1 + 103 T + p^{2} T^{2} \) |
| 67 | \( ( 1 - p T )( 1 + p T ) \) |
| 71 | \( ( 1 - p T )( 1 + p T ) \) |
| 73 | \( 1 + 25 T + p^{2} T^{2} \) |
| 79 | \( ( 1 - p T )( 1 + p T ) \) |
| 83 | \( 1 - 90 T + p^{2} T^{2} \) |
| 89 | \( ( 1 - p T )( 1 + p T ) \) |
| 97 | \( ( 1 - p T )( 1 + p T ) \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.617769548368163634254218158588, −8.905780799669726346291639114102, −7.950721780379256626396910939638, −6.84561280985131032950905934575, −6.28064280890198498089936432599, −5.21575972898535996476804658227, −4.66152478919190597730094087242, −3.19587303235678236099511865911, −1.90008376656696799905281197083, −1.32086676398853590177841162574,
1.32086676398853590177841162574, 1.90008376656696799905281197083, 3.19587303235678236099511865911, 4.66152478919190597730094087242, 5.21575972898535996476804658227, 6.28064280890198498089936432599, 6.84561280985131032950905934575, 7.950721780379256626396910939638, 8.905780799669726346291639114102, 9.617769548368163634254218158588