L(s) = 1 | + 9·5-s + 5·7-s + 9·9-s + 3·11-s + 15·17-s − 19·19-s + 30·23-s + 56·25-s + 45·35-s − 85·43-s + 81·45-s − 75·47-s − 24·49-s + 27·55-s − 103·61-s + 45·63-s − 25·73-s + 15·77-s + 81·81-s + 90·83-s + 135·85-s − 171·95-s + 27·99-s + 102·101-s + 270·115-s + 75·119-s + ⋯ |
L(s) = 1 | + 9/5·5-s + 5/7·7-s + 9-s + 3/11·11-s + 0.882·17-s − 19-s + 1.30·23-s + 2.23·25-s + 9/7·35-s − 1.97·43-s + 9/5·45-s − 1.59·47-s − 0.489·49-s + 0.490·55-s − 1.68·61-s + 5/7·63-s − 0.342·73-s + 0.194·77-s + 81-s + 1.08·83-s + 1.58·85-s − 9/5·95-s + 3/11·99-s + 1.00·101-s + 2.34·115-s + 0.630·119-s + ⋯ |
Λ(s)=(=(1216s/2ΓC(s)L(s)Λ(3−s)
Λ(s)=(=(1216s/2ΓC(s+1)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
1216
= 26⋅19
|
Sign: |
1
|
Analytic conductor: |
33.1336 |
Root analytic conductor: |
5.75617 |
Motivic weight: |
2 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ1216(1025,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 1216, ( :1), 1)
|
Particular Values
L(23) |
≈ |
3.480866159 |
L(21) |
≈ |
3.480866159 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 19 | 1+pT |
good | 3 | (1−pT)(1+pT) |
| 5 | 1−9T+p2T2 |
| 7 | 1−5T+p2T2 |
| 11 | 1−3T+p2T2 |
| 13 | (1−pT)(1+pT) |
| 17 | 1−15T+p2T2 |
| 23 | 1−30T+p2T2 |
| 29 | (1−pT)(1+pT) |
| 31 | (1−pT)(1+pT) |
| 37 | (1−pT)(1+pT) |
| 41 | (1−pT)(1+pT) |
| 43 | 1+85T+p2T2 |
| 47 | 1+75T+p2T2 |
| 53 | (1−pT)(1+pT) |
| 59 | (1−pT)(1+pT) |
| 61 | 1+103T+p2T2 |
| 67 | (1−pT)(1+pT) |
| 71 | (1−pT)(1+pT) |
| 73 | 1+25T+p2T2 |
| 79 | (1−pT)(1+pT) |
| 83 | 1−90T+p2T2 |
| 89 | (1−pT)(1+pT) |
| 97 | (1−pT)(1+pT) |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.617769548368163634254218158588, −8.905780799669726346291639114102, −7.950721780379256626396910939638, −6.84561280985131032950905934575, −6.28064280890198498089936432599, −5.21575972898535996476804658227, −4.66152478919190597730094087242, −3.19587303235678236099511865911, −1.90008376656696799905281197083, −1.32086676398853590177841162574,
1.32086676398853590177841162574, 1.90008376656696799905281197083, 3.19587303235678236099511865911, 4.66152478919190597730094087242, 5.21575972898535996476804658227, 6.28064280890198498089936432599, 6.84561280985131032950905934575, 7.950721780379256626396910939638, 8.905780799669726346291639114102, 9.617769548368163634254218158588