Properties

Label 2-1216-1.1-c1-0-20
Degree $2$
Conductor $1216$
Sign $1$
Analytic cond. $9.70980$
Root an. cond. $3.11605$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 5-s + 3·7-s + 9-s + 5·11-s + 4·13-s + 2·15-s − 3·17-s − 19-s + 6·21-s − 8·23-s − 4·25-s − 4·27-s + 2·29-s − 4·31-s + 10·33-s + 3·35-s − 10·37-s + 8·39-s + 10·41-s + 43-s + 45-s + 47-s + 2·49-s − 6·51-s + 4·53-s + 5·55-s + ⋯
L(s)  = 1  + 1.15·3-s + 0.447·5-s + 1.13·7-s + 1/3·9-s + 1.50·11-s + 1.10·13-s + 0.516·15-s − 0.727·17-s − 0.229·19-s + 1.30·21-s − 1.66·23-s − 4/5·25-s − 0.769·27-s + 0.371·29-s − 0.718·31-s + 1.74·33-s + 0.507·35-s − 1.64·37-s + 1.28·39-s + 1.56·41-s + 0.152·43-s + 0.149·45-s + 0.145·47-s + 2/7·49-s − 0.840·51-s + 0.549·53-s + 0.674·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1216 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1216 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1216\)    =    \(2^{6} \cdot 19\)
Sign: $1$
Analytic conductor: \(9.70980\)
Root analytic conductor: \(3.11605\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{1216} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1216,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.076206070\)
\(L(\frac12)\) \(\approx\) \(3.076206070\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
19 \( 1 + T \)
good3 \( 1 - 2 T + p T^{2} \)
5 \( 1 - T + p T^{2} \)
7 \( 1 - 3 T + p T^{2} \)
11 \( 1 - 5 T + p T^{2} \)
13 \( 1 - 4 T + p T^{2} \)
17 \( 1 + 3 T + p T^{2} \)
23 \( 1 + 8 T + p T^{2} \)
29 \( 1 - 2 T + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 + 10 T + p T^{2} \)
41 \( 1 - 10 T + p T^{2} \)
43 \( 1 - T + p T^{2} \)
47 \( 1 - T + p T^{2} \)
53 \( 1 - 4 T + p T^{2} \)
59 \( 1 - 6 T + p T^{2} \)
61 \( 1 - 13 T + p T^{2} \)
67 \( 1 + 12 T + p T^{2} \)
71 \( 1 + 2 T + p T^{2} \)
73 \( 1 - 9 T + p T^{2} \)
79 \( 1 + 8 T + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 - 12 T + p T^{2} \)
97 \( 1 + 8 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.470845631762160929353564163989, −8.762972910391102183787591721206, −8.381087888928782814621554216261, −7.46802549489449929304458830547, −6.39486340421971046323119110374, −5.61135260065455155907566257543, −4.17947794613570531538770424508, −3.73571330395388729025783799541, −2.22354879090908877160738042469, −1.55214010532178794455093749689, 1.55214010532178794455093749689, 2.22354879090908877160738042469, 3.73571330395388729025783799541, 4.17947794613570531538770424508, 5.61135260065455155907566257543, 6.39486340421971046323119110374, 7.46802549489449929304458830547, 8.381087888928782814621554216261, 8.762972910391102183787591721206, 9.470845631762160929353564163989

Graph of the $Z$-function along the critical line