L(s) = 1 | − 2·3-s − 3·5-s + 7-s + 9-s + 3·11-s + 4·13-s + 6·15-s − 3·17-s + 19-s − 2·21-s + 4·25-s + 4·27-s − 6·29-s + 4·31-s − 6·33-s − 3·35-s − 2·37-s − 8·39-s − 6·41-s − 43-s − 3·45-s + 3·47-s − 6·49-s + 6·51-s − 12·53-s − 9·55-s − 2·57-s + ⋯ |
L(s) = 1 | − 1.15·3-s − 1.34·5-s + 0.377·7-s + 1/3·9-s + 0.904·11-s + 1.10·13-s + 1.54·15-s − 0.727·17-s + 0.229·19-s − 0.436·21-s + 4/5·25-s + 0.769·27-s − 1.11·29-s + 0.718·31-s − 1.04·33-s − 0.507·35-s − 0.328·37-s − 1.28·39-s − 0.937·41-s − 0.152·43-s − 0.447·45-s + 0.437·47-s − 6/7·49-s + 0.840·51-s − 1.64·53-s − 1.21·55-s − 0.264·57-s + ⋯ |
Λ(s)=(=(1216s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(1216s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 19 | 1−T |
good | 3 | 1+2T+pT2 |
| 5 | 1+3T+pT2 |
| 7 | 1−T+pT2 |
| 11 | 1−3T+pT2 |
| 13 | 1−4T+pT2 |
| 17 | 1+3T+pT2 |
| 23 | 1+pT2 |
| 29 | 1+6T+pT2 |
| 31 | 1−4T+pT2 |
| 37 | 1+2T+pT2 |
| 41 | 1+6T+pT2 |
| 43 | 1+T+pT2 |
| 47 | 1−3T+pT2 |
| 53 | 1+12T+pT2 |
| 59 | 1+6T+pT2 |
| 61 | 1−T+pT2 |
| 67 | 1+4T+pT2 |
| 71 | 1+6T+pT2 |
| 73 | 1+7T+pT2 |
| 79 | 1+8T+pT2 |
| 83 | 1−12T+pT2 |
| 89 | 1−12T+pT2 |
| 97 | 1−8T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.199158339911279140575946730378, −8.462914393396165009068265832341, −7.65894969899749366452649043261, −6.68601933176938591059893570713, −6.07700564140158959836320975863, −4.96903618429312636799150610379, −4.19306407725294924458030580762, −3.33866387034377157662854676826, −1.39430917521719853589747801849, 0,
1.39430917521719853589747801849, 3.33866387034377157662854676826, 4.19306407725294924458030580762, 4.96903618429312636799150610379, 6.07700564140158959836320975863, 6.68601933176938591059893570713, 7.65894969899749366452649043261, 8.462914393396165009068265832341, 9.199158339911279140575946730378