L(s) = 1 | − 3i·3-s − 4i·7-s − 9·9-s + 48·11-s + 2i·13-s + 114i·17-s + 140·19-s − 12·21-s − 72i·23-s + 27i·27-s − 210·29-s − 272·31-s − 144i·33-s + 334i·37-s + 6·39-s + ⋯ |
L(s) = 1 | − 0.577i·3-s − 0.215i·7-s − 0.333·9-s + 1.31·11-s + 0.0426i·13-s + 1.62i·17-s + 1.69·19-s − 0.124·21-s − 0.652i·23-s + 0.192i·27-s − 1.34·29-s − 1.57·31-s − 0.759i·33-s + 1.48i·37-s + 0.0246·39-s + ⋯ |
Λ(s)=(=(1200s/2ΓC(s)L(s)(0.894−0.447i)Λ(4−s)
Λ(s)=(=(1200s/2ΓC(s+3/2)L(s)(0.894−0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
1200
= 24⋅3⋅52
|
Sign: |
0.894−0.447i
|
Analytic conductor: |
70.8022 |
Root analytic conductor: |
8.41440 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1200(49,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1200, ( :3/2), 0.894−0.447i)
|
Particular Values
L(2) |
≈ |
2.063733399 |
L(21) |
≈ |
2.063733399 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+3iT |
| 5 | 1 |
good | 7 | 1+4iT−343T2 |
| 11 | 1−48T+1.33e3T2 |
| 13 | 1−2iT−2.19e3T2 |
| 17 | 1−114iT−4.91e3T2 |
| 19 | 1−140T+6.85e3T2 |
| 23 | 1+72iT−1.21e4T2 |
| 29 | 1+210T+2.43e4T2 |
| 31 | 1+272T+2.97e4T2 |
| 37 | 1−334iT−5.06e4T2 |
| 41 | 1+198T+6.89e4T2 |
| 43 | 1−268iT−7.95e4T2 |
| 47 | 1−216iT−1.03e5T2 |
| 53 | 1+78iT−1.48e5T2 |
| 59 | 1−240T+2.05e5T2 |
| 61 | 1−302T+2.26e5T2 |
| 67 | 1−596iT−3.00e5T2 |
| 71 | 1−768T+3.57e5T2 |
| 73 | 1+478iT−3.89e5T2 |
| 79 | 1+640T+4.93e5T2 |
| 83 | 1−348iT−5.71e5T2 |
| 89 | 1+210T+7.04e5T2 |
| 97 | 1−1.53e3iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.359799366833261840636254597388, −8.605876664799966058516507915818, −7.72943548797226142481689761762, −6.94910197208657226420546753877, −6.19560886629945639039652644543, −5.34628656762851323706343060284, −4.05721486601111057134018429552, −3.32786197715328077176298711000, −1.83957999922518805068485831117, −1.05292629844596158041362267066,
0.56398853839584598481768331207, 1.94103194222554993707145549004, 3.31210587949333384787610363608, 3.92338759499866711659654893239, 5.23391451551795439624459672109, 5.63641496991596172262758155199, 7.05710802281960569950249482998, 7.44456820201042208779106791273, 8.871559736343740868445159615325, 9.312330133089882012630771800149