L(s) = 1 | − 3i·3-s − 4i·7-s − 9·9-s + 48·11-s + 2i·13-s + 114i·17-s + 140·19-s − 12·21-s − 72i·23-s + 27i·27-s − 210·29-s − 272·31-s − 144i·33-s + 334i·37-s + 6·39-s + ⋯ |
L(s) = 1 | − 0.577i·3-s − 0.215i·7-s − 0.333·9-s + 1.31·11-s + 0.0426i·13-s + 1.62i·17-s + 1.69·19-s − 0.124·21-s − 0.652i·23-s + 0.192i·27-s − 1.34·29-s − 1.57·31-s − 0.759i·33-s + 1.48i·37-s + 0.0246·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1200 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(2.063733399\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.063733399\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + 3iT \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + 4iT - 343T^{2} \) |
| 11 | \( 1 - 48T + 1.33e3T^{2} \) |
| 13 | \( 1 - 2iT - 2.19e3T^{2} \) |
| 17 | \( 1 - 114iT - 4.91e3T^{2} \) |
| 19 | \( 1 - 140T + 6.85e3T^{2} \) |
| 23 | \( 1 + 72iT - 1.21e4T^{2} \) |
| 29 | \( 1 + 210T + 2.43e4T^{2} \) |
| 31 | \( 1 + 272T + 2.97e4T^{2} \) |
| 37 | \( 1 - 334iT - 5.06e4T^{2} \) |
| 41 | \( 1 + 198T + 6.89e4T^{2} \) |
| 43 | \( 1 - 268iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 216iT - 1.03e5T^{2} \) |
| 53 | \( 1 + 78iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 240T + 2.05e5T^{2} \) |
| 61 | \( 1 - 302T + 2.26e5T^{2} \) |
| 67 | \( 1 - 596iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 768T + 3.57e5T^{2} \) |
| 73 | \( 1 + 478iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 640T + 4.93e5T^{2} \) |
| 83 | \( 1 - 348iT - 5.71e5T^{2} \) |
| 89 | \( 1 + 210T + 7.04e5T^{2} \) |
| 97 | \( 1 - 1.53e3iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.359799366833261840636254597388, −8.605876664799966058516507915818, −7.72943548797226142481689761762, −6.94910197208657226420546753877, −6.19560886629945639039652644543, −5.34628656762851323706343060284, −4.05721486601111057134018429552, −3.32786197715328077176298711000, −1.83957999922518805068485831117, −1.05292629844596158041362267066,
0.56398853839584598481768331207, 1.94103194222554993707145549004, 3.31210587949333384787610363608, 3.92338759499866711659654893239, 5.23391451551795439624459672109, 5.63641496991596172262758155199, 7.05710802281960569950249482998, 7.44456820201042208779106791273, 8.871559736343740868445159615325, 9.312330133089882012630771800149