L(s) = 1 | + 3i·3-s + 7i·7-s − 9·9-s + 54·11-s + 55i·13-s + 18i·17-s − 25·19-s − 21·21-s − 18i·23-s − 27i·27-s + 54·29-s + 271·31-s + 162i·33-s + 314i·37-s − 165·39-s + ⋯ |
L(s) = 1 | + 0.577i·3-s + 0.377i·7-s − 0.333·9-s + 1.48·11-s + 1.17i·13-s + 0.256i·17-s − 0.301·19-s − 0.218·21-s − 0.163i·23-s − 0.192i·27-s + 0.345·29-s + 1.57·31-s + 0.854i·33-s + 1.39i·37-s − 0.677·39-s + ⋯ |
Λ(s)=(=(1200s/2ΓC(s)L(s)(−0.447−0.894i)Λ(4−s)
Λ(s)=(=(1200s/2ΓC(s+3/2)L(s)(−0.447−0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
1200
= 24⋅3⋅52
|
Sign: |
−0.447−0.894i
|
Analytic conductor: |
70.8022 |
Root analytic conductor: |
8.41440 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1200(49,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1200, ( :3/2), −0.447−0.894i)
|
Particular Values
L(2) |
≈ |
2.017376315 |
L(21) |
≈ |
2.017376315 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−3iT |
| 5 | 1 |
good | 7 | 1−7iT−343T2 |
| 11 | 1−54T+1.33e3T2 |
| 13 | 1−55iT−2.19e3T2 |
| 17 | 1−18iT−4.91e3T2 |
| 19 | 1+25T+6.85e3T2 |
| 23 | 1+18iT−1.21e4T2 |
| 29 | 1−54T+2.43e4T2 |
| 31 | 1−271T+2.97e4T2 |
| 37 | 1−314iT−5.06e4T2 |
| 41 | 1+360T+6.89e4T2 |
| 43 | 1+163iT−7.95e4T2 |
| 47 | 1+522iT−1.03e5T2 |
| 53 | 1−36iT−1.48e5T2 |
| 59 | 1−126T+2.05e5T2 |
| 61 | 1−47T+2.26e5T2 |
| 67 | 1−343iT−3.00e5T2 |
| 71 | 1−1.08e3T+3.57e5T2 |
| 73 | 1−1.05e3iT−3.89e5T2 |
| 79 | 1+568T+4.93e5T2 |
| 83 | 1−1.42e3iT−5.71e5T2 |
| 89 | 1+1.44e3T+7.04e5T2 |
| 97 | 1+439iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.704153871904488121429806842047, −8.721794412025526577769542282224, −8.424326200094274154299585098569, −6.81318786416026731162709429189, −6.51104638832887127008378911074, −5.32049161632393736882652333550, −4.34482991094341921657101712414, −3.70631398055409540235275342180, −2.40772034300162293554848723998, −1.21639446469872368141758830268,
0.52899772828367240462423674364, 1.44944424887702306612152415128, 2.78148908002658107576742104953, 3.78049889278053770911545713004, 4.79937358438954831285970096414, 5.95482858596549819677102579659, 6.59644822228975531186182986916, 7.45582428244387797958789774062, 8.227156027655877752073021621797, 9.043489549090572496222499366155