L(s) = 1 | + 3·3-s + 10·7-s + 9·9-s + 46·11-s + 34·13-s − 66·17-s − 104·19-s + 30·21-s + 164·23-s + 27·27-s + 224·29-s + 72·31-s + 138·33-s + 22·37-s + 102·39-s + 194·41-s + 108·43-s − 480·47-s − 243·49-s − 198·51-s − 286·53-s − 312·57-s − 426·59-s + 698·61-s + 90·63-s + 328·67-s + 492·69-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 0.539·7-s + 1/3·9-s + 1.26·11-s + 0.725·13-s − 0.941·17-s − 1.25·19-s + 0.311·21-s + 1.48·23-s + 0.192·27-s + 1.43·29-s + 0.417·31-s + 0.727·33-s + 0.0977·37-s + 0.418·39-s + 0.738·41-s + 0.383·43-s − 1.48·47-s − 0.708·49-s − 0.543·51-s − 0.741·53-s − 0.725·57-s − 0.940·59-s + 1.46·61-s + 0.179·63-s + 0.598·67-s + 0.858·69-s + ⋯ |
Λ(s)=(=(1200s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(1200s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
3.307256682 |
L(21) |
≈ |
3.307256682 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−pT |
| 5 | 1 |
good | 7 | 1−10T+p3T2 |
| 11 | 1−46T+p3T2 |
| 13 | 1−34T+p3T2 |
| 17 | 1+66T+p3T2 |
| 19 | 1+104T+p3T2 |
| 23 | 1−164T+p3T2 |
| 29 | 1−224T+p3T2 |
| 31 | 1−72T+p3T2 |
| 37 | 1−22T+p3T2 |
| 41 | 1−194T+p3T2 |
| 43 | 1−108T+p3T2 |
| 47 | 1+480T+p3T2 |
| 53 | 1+286T+p3T2 |
| 59 | 1+426T+p3T2 |
| 61 | 1−698T+p3T2 |
| 67 | 1−328T+p3T2 |
| 71 | 1+188T+p3T2 |
| 73 | 1−740T+p3T2 |
| 79 | 1+1168T+p3T2 |
| 83 | 1−412T+p3T2 |
| 89 | 1−1206T+p3T2 |
| 97 | 1−1384T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.079087925847133918258633480504, −8.699196896808405027754966662169, −7.925664972674091914237056439637, −6.69930778026511787663650373074, −6.36647011455408362461244122054, −4.83649225388288141052162023904, −4.20660091284425316509616352167, −3.15130076087417641305182643318, −1.98046210369980688494576034578, −0.965307921502203093187681599164,
0.965307921502203093187681599164, 1.98046210369980688494576034578, 3.15130076087417641305182643318, 4.20660091284425316509616352167, 4.83649225388288141052162023904, 6.36647011455408362461244122054, 6.69930778026511787663650373074, 7.925664972674091914237056439637, 8.699196896808405027754966662169, 9.079087925847133918258633480504