Properties

Label 2-1200-1.1-c3-0-24
Degree $2$
Conductor $1200$
Sign $1$
Analytic cond. $70.8022$
Root an. cond. $8.41440$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s + 10·7-s + 9·9-s + 46·11-s + 34·13-s − 66·17-s − 104·19-s + 30·21-s + 164·23-s + 27·27-s + 224·29-s + 72·31-s + 138·33-s + 22·37-s + 102·39-s + 194·41-s + 108·43-s − 480·47-s − 243·49-s − 198·51-s − 286·53-s − 312·57-s − 426·59-s + 698·61-s + 90·63-s + 328·67-s + 492·69-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.539·7-s + 1/3·9-s + 1.26·11-s + 0.725·13-s − 0.941·17-s − 1.25·19-s + 0.311·21-s + 1.48·23-s + 0.192·27-s + 1.43·29-s + 0.417·31-s + 0.727·33-s + 0.0977·37-s + 0.418·39-s + 0.738·41-s + 0.383·43-s − 1.48·47-s − 0.708·49-s − 0.543·51-s − 0.741·53-s − 0.725·57-s − 0.940·59-s + 1.46·61-s + 0.179·63-s + 0.598·67-s + 0.858·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1200 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1200\)    =    \(2^{4} \cdot 3 \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(70.8022\)
Root analytic conductor: \(8.41440\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1200,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.307256682\)
\(L(\frac12)\) \(\approx\) \(3.307256682\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - p T \)
5 \( 1 \)
good7 \( 1 - 10 T + p^{3} T^{2} \)
11 \( 1 - 46 T + p^{3} T^{2} \)
13 \( 1 - 34 T + p^{3} T^{2} \)
17 \( 1 + 66 T + p^{3} T^{2} \)
19 \( 1 + 104 T + p^{3} T^{2} \)
23 \( 1 - 164 T + p^{3} T^{2} \)
29 \( 1 - 224 T + p^{3} T^{2} \)
31 \( 1 - 72 T + p^{3} T^{2} \)
37 \( 1 - 22 T + p^{3} T^{2} \)
41 \( 1 - 194 T + p^{3} T^{2} \)
43 \( 1 - 108 T + p^{3} T^{2} \)
47 \( 1 + 480 T + p^{3} T^{2} \)
53 \( 1 + 286 T + p^{3} T^{2} \)
59 \( 1 + 426 T + p^{3} T^{2} \)
61 \( 1 - 698 T + p^{3} T^{2} \)
67 \( 1 - 328 T + p^{3} T^{2} \)
71 \( 1 + 188 T + p^{3} T^{2} \)
73 \( 1 - 740 T + p^{3} T^{2} \)
79 \( 1 + 1168 T + p^{3} T^{2} \)
83 \( 1 - 412 T + p^{3} T^{2} \)
89 \( 1 - 1206 T + p^{3} T^{2} \)
97 \( 1 - 1384 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.079087925847133918258633480504, −8.699196896808405027754966662169, −7.925664972674091914237056439637, −6.69930778026511787663650373074, −6.36647011455408362461244122054, −4.83649225388288141052162023904, −4.20660091284425316509616352167, −3.15130076087417641305182643318, −1.98046210369980688494576034578, −0.965307921502203093187681599164, 0.965307921502203093187681599164, 1.98046210369980688494576034578, 3.15130076087417641305182643318, 4.20660091284425316509616352167, 4.83649225388288141052162023904, 6.36647011455408362461244122054, 6.69930778026511787663650373074, 7.925664972674091914237056439637, 8.699196896808405027754966662169, 9.079087925847133918258633480504

Graph of the $Z$-function along the critical line