L(s) = 1 | + 3·3-s + 10·7-s + 9·9-s + 46·11-s + 34·13-s − 66·17-s − 104·19-s + 30·21-s + 164·23-s + 27·27-s + 224·29-s + 72·31-s + 138·33-s + 22·37-s + 102·39-s + 194·41-s + 108·43-s − 480·47-s − 243·49-s − 198·51-s − 286·53-s − 312·57-s − 426·59-s + 698·61-s + 90·63-s + 328·67-s + 492·69-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 0.539·7-s + 1/3·9-s + 1.26·11-s + 0.725·13-s − 0.941·17-s − 1.25·19-s + 0.311·21-s + 1.48·23-s + 0.192·27-s + 1.43·29-s + 0.417·31-s + 0.727·33-s + 0.0977·37-s + 0.418·39-s + 0.738·41-s + 0.383·43-s − 1.48·47-s − 0.708·49-s − 0.543·51-s − 0.741·53-s − 0.725·57-s − 0.940·59-s + 1.46·61-s + 0.179·63-s + 0.598·67-s + 0.858·69-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1200 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(3.307256682\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.307256682\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - p T \) |
| 5 | \( 1 \) |
good | 7 | \( 1 - 10 T + p^{3} T^{2} \) |
| 11 | \( 1 - 46 T + p^{3} T^{2} \) |
| 13 | \( 1 - 34 T + p^{3} T^{2} \) |
| 17 | \( 1 + 66 T + p^{3} T^{2} \) |
| 19 | \( 1 + 104 T + p^{3} T^{2} \) |
| 23 | \( 1 - 164 T + p^{3} T^{2} \) |
| 29 | \( 1 - 224 T + p^{3} T^{2} \) |
| 31 | \( 1 - 72 T + p^{3} T^{2} \) |
| 37 | \( 1 - 22 T + p^{3} T^{2} \) |
| 41 | \( 1 - 194 T + p^{3} T^{2} \) |
| 43 | \( 1 - 108 T + p^{3} T^{2} \) |
| 47 | \( 1 + 480 T + p^{3} T^{2} \) |
| 53 | \( 1 + 286 T + p^{3} T^{2} \) |
| 59 | \( 1 + 426 T + p^{3} T^{2} \) |
| 61 | \( 1 - 698 T + p^{3} T^{2} \) |
| 67 | \( 1 - 328 T + p^{3} T^{2} \) |
| 71 | \( 1 + 188 T + p^{3} T^{2} \) |
| 73 | \( 1 - 740 T + p^{3} T^{2} \) |
| 79 | \( 1 + 1168 T + p^{3} T^{2} \) |
| 83 | \( 1 - 412 T + p^{3} T^{2} \) |
| 89 | \( 1 - 1206 T + p^{3} T^{2} \) |
| 97 | \( 1 - 1384 T + p^{3} T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.079087925847133918258633480504, −8.699196896808405027754966662169, −7.925664972674091914237056439637, −6.69930778026511787663650373074, −6.36647011455408362461244122054, −4.83649225388288141052162023904, −4.20660091284425316509616352167, −3.15130076087417641305182643318, −1.98046210369980688494576034578, −0.965307921502203093187681599164,
0.965307921502203093187681599164, 1.98046210369980688494576034578, 3.15130076087417641305182643318, 4.20660091284425316509616352167, 4.83649225388288141052162023904, 6.36647011455408362461244122054, 6.69930778026511787663650373074, 7.925664972674091914237056439637, 8.699196896808405027754966662169, 9.079087925847133918258633480504