L(s) = 1 | + 3·3-s + 33.0·7-s + 9·9-s − 48.3·11-s − 60.3·13-s − 17.7·17-s + 130.·19-s + 99.2·21-s − 70.8·23-s + 27·27-s + 104.·29-s + 210.·31-s − 145.·33-s + 300.·37-s − 181.·39-s + 240.·41-s + 108·43-s + 278.·47-s + 750.·49-s − 53.3·51-s + 328.·53-s + 392.·57-s − 889.·59-s − 241.·61-s + 297.·63-s − 103.·67-s − 212.·69-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 1.78·7-s + 0.333·9-s − 1.32·11-s − 1.28·13-s − 0.253·17-s + 1.58·19-s + 1.03·21-s − 0.642·23-s + 0.192·27-s + 0.669·29-s + 1.21·31-s − 0.765·33-s + 1.33·37-s − 0.743·39-s + 0.914·41-s + 0.383·43-s + 0.865·47-s + 2.18·49-s − 0.146·51-s + 0.851·53-s + 0.912·57-s − 1.96·59-s − 0.506·61-s + 0.595·63-s − 0.189·67-s − 0.370·69-s + ⋯ |
Λ(s)=(=(1200s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(1200s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
3.119990509 |
L(21) |
≈ |
3.119990509 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−3T |
| 5 | 1 |
good | 7 | 1−33.0T+343T2 |
| 11 | 1+48.3T+1.33e3T2 |
| 13 | 1+60.3T+2.19e3T2 |
| 17 | 1+17.7T+4.91e3T2 |
| 19 | 1−130.T+6.85e3T2 |
| 23 | 1+70.8T+1.21e4T2 |
| 29 | 1−104.T+2.43e4T2 |
| 31 | 1−210.T+2.97e4T2 |
| 37 | 1−300.T+5.06e4T2 |
| 41 | 1−240.T+6.89e4T2 |
| 43 | 1−108T+7.95e4T2 |
| 47 | 1−278.T+1.03e5T2 |
| 53 | 1−328.T+1.48e5T2 |
| 59 | 1+889.T+2.05e5T2 |
| 61 | 1+241.T+2.26e5T2 |
| 67 | 1+103.T+3.00e5T2 |
| 71 | 1−277.T+3.57e5T2 |
| 73 | 1−274.T+3.89e5T2 |
| 79 | 1+366.T+4.93e5T2 |
| 83 | 1+57.7T+5.71e5T2 |
| 89 | 1+203.T+7.04e5T2 |
| 97 | 1−1.28e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.372783420025994038417886062849, −8.340661919045081631091633034023, −7.68880235023874252580015271091, −7.42556424170616120194743333112, −5.82023630005094069514386690949, −4.90238083442971768066309319949, −4.44863420620650766132696366503, −2.84867373886782349622594371706, −2.19081336113120710667779492294, −0.902478242542447817355648283085,
0.902478242542447817355648283085, 2.19081336113120710667779492294, 2.84867373886782349622594371706, 4.44863420620650766132696366503, 4.90238083442971768066309319949, 5.82023630005094069514386690949, 7.42556424170616120194743333112, 7.68880235023874252580015271091, 8.340661919045081631091633034023, 9.372783420025994038417886062849