L(s) = 1 | − 3·3-s + 4.43·7-s + 9·9-s + 3.43·11-s + 78.7·13-s + 53.1·17-s − 20.4·19-s − 13.3·21-s − 118.·23-s − 27·27-s + 168.·29-s + 61.0·31-s − 10.3·33-s − 246.·37-s − 236.·39-s + 422.·41-s − 362.·43-s + 170.·47-s − 323.·49-s − 159.·51-s − 546.·53-s + 61.3·57-s + 216.·59-s + 130.·61-s + 39.9·63-s + 614.·67-s + 354.·69-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 0.239·7-s + 0.333·9-s + 0.0941·11-s + 1.67·13-s + 0.758·17-s − 0.246·19-s − 0.138·21-s − 1.07·23-s − 0.192·27-s + 1.07·29-s + 0.353·31-s − 0.0543·33-s − 1.09·37-s − 0.969·39-s + 1.60·41-s − 1.28·43-s + 0.529·47-s − 0.942·49-s − 0.438·51-s − 1.41·53-s + 0.142·57-s + 0.478·59-s + 0.274·61-s + 0.0798·63-s + 1.12·67-s + 0.619·69-s + ⋯ |
Λ(s)=(=(1200s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(1200s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
1.940679970 |
L(21) |
≈ |
1.940679970 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+3T |
| 5 | 1 |
good | 7 | 1−4.43T+343T2 |
| 11 | 1−3.43T+1.33e3T2 |
| 13 | 1−78.7T+2.19e3T2 |
| 17 | 1−53.1T+4.91e3T2 |
| 19 | 1+20.4T+6.85e3T2 |
| 23 | 1+118.T+1.21e4T2 |
| 29 | 1−168.T+2.43e4T2 |
| 31 | 1−61.0T+2.97e4T2 |
| 37 | 1+246.T+5.06e4T2 |
| 41 | 1−422.T+6.89e4T2 |
| 43 | 1+362.T+7.95e4T2 |
| 47 | 1−170.T+1.03e5T2 |
| 53 | 1+546.T+1.48e5T2 |
| 59 | 1−216.T+2.05e5T2 |
| 61 | 1−130.T+2.26e5T2 |
| 67 | 1−614.T+3.00e5T2 |
| 71 | 1+324.T+3.57e5T2 |
| 73 | 1+88.8T+3.89e5T2 |
| 79 | 1−1.13e3T+4.93e5T2 |
| 83 | 1−758.T+5.71e5T2 |
| 89 | 1−195.T+7.04e5T2 |
| 97 | 1−521T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.436668028118038519227309944081, −8.417040653075729077707211503908, −7.88771010992851787689019347176, −6.63703279491758345981701194380, −6.10321999594169619831863839845, −5.19955176561685212083681972357, −4.17724365826440078712774198803, −3.30053302366629128402217145378, −1.78380369826522596803033591672, −0.77105254202752678220666731640,
0.77105254202752678220666731640, 1.78380369826522596803033591672, 3.30053302366629128402217145378, 4.17724365826440078712774198803, 5.19955176561685212083681972357, 6.10321999594169619831863839845, 6.63703279491758345981701194380, 7.88771010992851787689019347176, 8.417040653075729077707211503908, 9.436668028118038519227309944081