Properties

Label 2-120-15.14-c8-0-34
Degree $2$
Conductor $120$
Sign $-0.197 + 0.980i$
Analytic cond. $48.8854$
Root an. cond. $6.99181$
Motivic weight $8$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (24.3 + 77.2i)3-s + (−547. − 301. i)5-s + 1.53e3i·7-s + (−5.37e3 + 3.75e3i)9-s + 7.76e3i·11-s + 2.43e4i·13-s + (1.00e4 − 4.96e4i)15-s + 8.39e4·17-s − 1.15e5·19-s + (−1.18e5 + 3.73e4i)21-s − 1.86e5·23-s + (2.08e5 + 3.30e5i)25-s + (−4.21e5 − 3.24e5i)27-s − 9.07e5i·29-s − 1.08e6·31-s + ⋯
L(s)  = 1  + (0.300 + 0.953i)3-s + (−0.875 − 0.483i)5-s + 0.639i·7-s + (−0.819 + 0.572i)9-s + 0.530i·11-s + 0.852i·13-s + (0.197 − 0.980i)15-s + 1.00·17-s − 0.884·19-s + (−0.610 + 0.192i)21-s − 0.665·23-s + (0.533 + 0.845i)25-s + (−0.792 − 0.610i)27-s − 1.28i·29-s − 1.17·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.197 + 0.980i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 120 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (-0.197 + 0.980i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(120\)    =    \(2^{3} \cdot 3 \cdot 5\)
Sign: $-0.197 + 0.980i$
Analytic conductor: \(48.8854\)
Root analytic conductor: \(6.99181\)
Motivic weight: \(8\)
Rational: no
Arithmetic: yes
Character: $\chi_{120} (89, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 120,\ (\ :4),\ -0.197 + 0.980i)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(0.08128583377\)
\(L(\frac12)\) \(\approx\) \(0.08128583377\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (-24.3 - 77.2i)T \)
5 \( 1 + (547. + 301. i)T \)
good7 \( 1 - 1.53e3iT - 5.76e6T^{2} \)
11 \( 1 - 7.76e3iT - 2.14e8T^{2} \)
13 \( 1 - 2.43e4iT - 8.15e8T^{2} \)
17 \( 1 - 8.39e4T + 6.97e9T^{2} \)
19 \( 1 + 1.15e5T + 1.69e10T^{2} \)
23 \( 1 + 1.86e5T + 7.83e10T^{2} \)
29 \( 1 + 9.07e5iT - 5.00e11T^{2} \)
31 \( 1 + 1.08e6T + 8.52e11T^{2} \)
37 \( 1 - 5.92e4iT - 3.51e12T^{2} \)
41 \( 1 + 3.29e5iT - 7.98e12T^{2} \)
43 \( 1 + 4.48e6iT - 1.16e13T^{2} \)
47 \( 1 - 4.73e5T + 2.38e13T^{2} \)
53 \( 1 - 1.18e7T + 6.22e13T^{2} \)
59 \( 1 - 3.27e6iT - 1.46e14T^{2} \)
61 \( 1 + 2.05e7T + 1.91e14T^{2} \)
67 \( 1 + 3.13e7iT - 4.06e14T^{2} \)
71 \( 1 + 9.40e6iT - 6.45e14T^{2} \)
73 \( 1 + 3.64e7iT - 8.06e14T^{2} \)
79 \( 1 + 4.17e7T + 1.51e15T^{2} \)
83 \( 1 + 2.83e7T + 2.25e15T^{2} \)
89 \( 1 - 1.11e7iT - 3.93e15T^{2} \)
97 \( 1 - 5.09e7iT - 7.83e15T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.70336560295853236716372787346, −10.51321680260318416015672956332, −9.370057342747562127881053607619, −8.586078301253450928924861682358, −7.51713983869263115264760590188, −5.76300434736602857948355513464, −4.55001085678816099873914865244, −3.68073561996253154707866443314, −2.10947347108093425459138519738, −0.02270094810783094656616286281, 1.13667131796250798407125119858, 2.86180254617075050955892672844, 3.85050672142763312929488316786, 5.74001052452216012723094637523, 7.00712880583001600167498665162, 7.77974439001323223318739013010, 8.642774724776597581353467007510, 10.32516650500872356917690304845, 11.23683703318445964762891512521, 12.31030646424778939531241166127

Graph of the $Z$-function along the critical line