Properties

Label 2-120-15.14-c8-0-12
Degree $2$
Conductor $120$
Sign $-0.740 - 0.671i$
Analytic cond. $48.8854$
Root an. cond. $6.99181$
Motivic weight $8$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−77.3 − 24.0i)3-s + (566. + 263. i)5-s + 3.44e3i·7-s + (5.40e3 + 3.72e3i)9-s + 1.54e4i·11-s + 9.93e3i·13-s + (−3.75e4 − 3.40e4i)15-s + 4.29e4·17-s + 4.49e4·19-s + (8.29e4 − 2.66e5i)21-s − 2.96e5·23-s + (2.51e5 + 2.98e5i)25-s + (−3.28e5 − 4.17e5i)27-s − 6.28e5i·29-s + 1.30e6·31-s + ⋯
L(s)  = 1  + (−0.954 − 0.297i)3-s + (0.906 + 0.421i)5-s + 1.43i·7-s + (0.823 + 0.567i)9-s + 1.05i·11-s + 0.347i·13-s + (−0.740 − 0.671i)15-s + 0.514·17-s + 0.344·19-s + (0.426 − 1.37i)21-s − 1.05·23-s + (0.645 + 0.764i)25-s + (−0.617 − 0.786i)27-s − 0.888i·29-s + 1.40·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.740 - 0.671i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 120 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (-0.740 - 0.671i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(120\)    =    \(2^{3} \cdot 3 \cdot 5\)
Sign: $-0.740 - 0.671i$
Analytic conductor: \(48.8854\)
Root analytic conductor: \(6.99181\)
Motivic weight: \(8\)
Rational: no
Arithmetic: yes
Character: $\chi_{120} (89, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 120,\ (\ :4),\ -0.740 - 0.671i)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(1.355027610\)
\(L(\frac12)\) \(\approx\) \(1.355027610\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (77.3 + 24.0i)T \)
5 \( 1 + (-566. - 263. i)T \)
good7 \( 1 - 3.44e3iT - 5.76e6T^{2} \)
11 \( 1 - 1.54e4iT - 2.14e8T^{2} \)
13 \( 1 - 9.93e3iT - 8.15e8T^{2} \)
17 \( 1 - 4.29e4T + 6.97e9T^{2} \)
19 \( 1 - 4.49e4T + 1.69e10T^{2} \)
23 \( 1 + 2.96e5T + 7.83e10T^{2} \)
29 \( 1 + 6.28e5iT - 5.00e11T^{2} \)
31 \( 1 - 1.30e6T + 8.52e11T^{2} \)
37 \( 1 + 1.56e6iT - 3.51e12T^{2} \)
41 \( 1 - 9.80e5iT - 7.98e12T^{2} \)
43 \( 1 - 5.90e6iT - 1.16e13T^{2} \)
47 \( 1 + 6.68e6T + 2.38e13T^{2} \)
53 \( 1 + 8.16e6T + 6.22e13T^{2} \)
59 \( 1 - 2.30e7iT - 1.46e14T^{2} \)
61 \( 1 - 6.16e6T + 1.91e14T^{2} \)
67 \( 1 + 3.43e7iT - 4.06e14T^{2} \)
71 \( 1 - 4.22e6iT - 6.45e14T^{2} \)
73 \( 1 - 1.17e7iT - 8.06e14T^{2} \)
79 \( 1 - 2.04e7T + 1.51e15T^{2} \)
83 \( 1 + 7.73e7T + 2.25e15T^{2} \)
89 \( 1 + 6.91e7iT - 3.93e15T^{2} \)
97 \( 1 - 7.42e7iT - 7.83e15T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.19067058293612259409969402086, −11.49458727445883401717153432887, −10.10327490808140577706098454303, −9.478111899195559136932197382911, −7.86058574653158665480430636473, −6.48656717803439055313931089806, −5.80958447181403983931338502747, −4.71574998521099375834723165363, −2.53643041880754855595228312342, −1.55987129832717513367120178510, 0.43676444408862229162499453904, 1.31425625316382381883410337530, 3.50700340180009656844489650790, 4.81137216890984338381548792728, 5.85327584916359573870553651177, 6.85239116501929798270467878223, 8.284320063589265562346329529255, 9.842890762633646913218001096972, 10.34525390427053355597087656261, 11.36372231174858055707517781972

Graph of the $Z$-function along the critical line