L(s) = 1 | + (−0.401 + 2.79i)2-s + (−2.36 + 4.62i)3-s + (−7.67 − 2.24i)4-s + (3.00 − 10.7i)5-s + (−12.0 − 8.48i)6-s + (13.4 − 13.4i)7-s + (9.37 − 20.5i)8-s + (−15.8 − 21.8i)9-s + (28.9 + 12.7i)10-s − 30.2·11-s + (28.5 − 30.2i)12-s + (25.9 − 25.9i)13-s + (32.2 + 43.0i)14-s + (42.7 + 39.3i)15-s + (53.8 + 34.5i)16-s + (−26.6 − 26.6i)17-s + ⋯ |
L(s) = 1 | + (−0.141 + 0.989i)2-s + (−0.455 + 0.890i)3-s + (−0.959 − 0.281i)4-s + (0.268 − 0.963i)5-s + (−0.816 − 0.577i)6-s + (0.725 − 0.725i)7-s + (0.414 − 0.910i)8-s + (−0.585 − 0.810i)9-s + (0.915 + 0.402i)10-s − 0.829·11-s + (0.687 − 0.726i)12-s + (0.553 − 0.553i)13-s + (0.614 + 0.820i)14-s + (0.735 + 0.677i)15-s + (0.841 + 0.539i)16-s + (−0.380 − 0.380i)17-s + ⋯ |
Λ(s)=(=(120s/2ΓC(s)L(s)(0.988+0.154i)Λ(4−s)
Λ(s)=(=(120s/2ΓC(s+3/2)L(s)(0.988+0.154i)Λ(1−s)
Degree: |
2 |
Conductor: |
120
= 23⋅3⋅5
|
Sign: |
0.988+0.154i
|
Analytic conductor: |
7.08022 |
Root analytic conductor: |
2.66087 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ120(53,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 120, ( :3/2), 0.988+0.154i)
|
Particular Values
L(2) |
≈ |
1.00132−0.0776762i |
L(21) |
≈ |
1.00132−0.0776762i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.401−2.79i)T |
| 3 | 1+(2.36−4.62i)T |
| 5 | 1+(−3.00+10.7i)T |
good | 7 | 1+(−13.4+13.4i)T−343iT2 |
| 11 | 1+30.2T+1.33e3T2 |
| 13 | 1+(−25.9+25.9i)T−2.19e3iT2 |
| 17 | 1+(26.6+26.6i)T+4.91e3iT2 |
| 19 | 1−48.6T+6.85e3T2 |
| 23 | 1+(59.4−59.4i)T−1.21e4iT2 |
| 29 | 1+254.iT−2.43e4T2 |
| 31 | 1−240.T+2.97e4T2 |
| 37 | 1+(177.+177.i)T+5.06e4iT2 |
| 41 | 1−88.8iT−6.89e4T2 |
| 43 | 1+(−335.+335.i)T−7.95e4iT2 |
| 47 | 1+(316.+316.i)T+1.03e5iT2 |
| 53 | 1+(−53.4−53.4i)T+1.48e5iT2 |
| 59 | 1−26.0iT−2.05e5T2 |
| 61 | 1−685.iT−2.26e5T2 |
| 67 | 1+(429.+429.i)T+3.00e5iT2 |
| 71 | 1−2.66iT−3.57e5T2 |
| 73 | 1+(417.+417.i)T+3.89e5iT2 |
| 79 | 1−662.iT−4.93e5T2 |
| 83 | 1+(−915.−915.i)T+5.71e5iT2 |
| 89 | 1+470.T+7.04e5T2 |
| 97 | 1+(−1.20e3+1.20e3i)T−9.12e5iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.37380165393008807997187366122, −11.92044008621227347848880714622, −10.56659475666374944000192864059, −9.742626145513208592919144320902, −8.600208441192221651434222512809, −7.67556532289017712176786447784, −5.93610327235817686342233306186, −5.06189965554009759426638603041, −4.10843056656529638414291803472, −0.62116183402971448224425973737,
1.69318367658863934971517454210, 2.86297884231410036436295397140, 4.97807956183264880571556483675, 6.26683185797364845688477754988, 7.74613020052404992431146502098, 8.721458172591559297055762308116, 10.28341194029325590778427553065, 11.11510483144459059863582917891, 11.81735957079665405820898037727, 12.84818726797171415670495408168