L(s) = 1 | + (−0.401 + 2.79i)2-s + (−2.36 + 4.62i)3-s + (−7.67 − 2.24i)4-s + (3.00 − 10.7i)5-s + (−12.0 − 8.48i)6-s + (13.4 − 13.4i)7-s + (9.37 − 20.5i)8-s + (−15.8 − 21.8i)9-s + (28.9 + 12.7i)10-s − 30.2·11-s + (28.5 − 30.2i)12-s + (25.9 − 25.9i)13-s + (32.2 + 43.0i)14-s + (42.7 + 39.3i)15-s + (53.8 + 34.5i)16-s + (−26.6 − 26.6i)17-s + ⋯ |
L(s) = 1 | + (−0.141 + 0.989i)2-s + (−0.455 + 0.890i)3-s + (−0.959 − 0.281i)4-s + (0.268 − 0.963i)5-s + (−0.816 − 0.577i)6-s + (0.725 − 0.725i)7-s + (0.414 − 0.910i)8-s + (−0.585 − 0.810i)9-s + (0.915 + 0.402i)10-s − 0.829·11-s + (0.687 − 0.726i)12-s + (0.553 − 0.553i)13-s + (0.614 + 0.820i)14-s + (0.735 + 0.677i)15-s + (0.841 + 0.539i)16-s + (−0.380 − 0.380i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.988 + 0.154i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 120 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.988 + 0.154i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.00132 - 0.0776762i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.00132 - 0.0776762i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.401 - 2.79i)T \) |
| 3 | \( 1 + (2.36 - 4.62i)T \) |
| 5 | \( 1 + (-3.00 + 10.7i)T \) |
good | 7 | \( 1 + (-13.4 + 13.4i)T - 343iT^{2} \) |
| 11 | \( 1 + 30.2T + 1.33e3T^{2} \) |
| 13 | \( 1 + (-25.9 + 25.9i)T - 2.19e3iT^{2} \) |
| 17 | \( 1 + (26.6 + 26.6i)T + 4.91e3iT^{2} \) |
| 19 | \( 1 - 48.6T + 6.85e3T^{2} \) |
| 23 | \( 1 + (59.4 - 59.4i)T - 1.21e4iT^{2} \) |
| 29 | \( 1 + 254. iT - 2.43e4T^{2} \) |
| 31 | \( 1 - 240.T + 2.97e4T^{2} \) |
| 37 | \( 1 + (177. + 177. i)T + 5.06e4iT^{2} \) |
| 41 | \( 1 - 88.8iT - 6.89e4T^{2} \) |
| 43 | \( 1 + (-335. + 335. i)T - 7.95e4iT^{2} \) |
| 47 | \( 1 + (316. + 316. i)T + 1.03e5iT^{2} \) |
| 53 | \( 1 + (-53.4 - 53.4i)T + 1.48e5iT^{2} \) |
| 59 | \( 1 - 26.0iT - 2.05e5T^{2} \) |
| 61 | \( 1 - 685. iT - 2.26e5T^{2} \) |
| 67 | \( 1 + (429. + 429. i)T + 3.00e5iT^{2} \) |
| 71 | \( 1 - 2.66iT - 3.57e5T^{2} \) |
| 73 | \( 1 + (417. + 417. i)T + 3.89e5iT^{2} \) |
| 79 | \( 1 - 662. iT - 4.93e5T^{2} \) |
| 83 | \( 1 + (-915. - 915. i)T + 5.71e5iT^{2} \) |
| 89 | \( 1 + 470.T + 7.04e5T^{2} \) |
| 97 | \( 1 + (-1.20e3 + 1.20e3i)T - 9.12e5iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.37380165393008807997187366122, −11.92044008621227347848880714622, −10.56659475666374944000192864059, −9.742626145513208592919144320902, −8.600208441192221651434222512809, −7.67556532289017712176786447784, −5.93610327235817686342233306186, −5.06189965554009759426638603041, −4.10843056656529638414291803472, −0.62116183402971448224425973737,
1.69318367658863934971517454210, 2.86297884231410036436295397140, 4.97807956183264880571556483675, 6.26683185797364845688477754988, 7.74613020052404992431146502098, 8.721458172591559297055762308116, 10.28341194029325590778427553065, 11.11510483144459059863582917891, 11.81735957079665405820898037727, 12.84818726797171415670495408168