L(s) = 1 | + (2.75 + 0.631i)2-s + (−4.07 − 3.22i)3-s + (7.20 + 3.48i)4-s + (8.53 + 7.21i)5-s + (−9.20 − 11.4i)6-s + (−9.44 + 9.44i)7-s + (17.6 + 14.1i)8-s + (6.24 + 26.2i)9-s + (18.9 + 25.2i)10-s + 41.6·11-s + (−18.1 − 37.4i)12-s + (53.3 − 53.3i)13-s + (−32.0 + 20.0i)14-s + (−11.5 − 56.9i)15-s + (39.7 + 50.1i)16-s + (41.4 + 41.4i)17-s + ⋯ |
L(s) = 1 | + (0.974 + 0.223i)2-s + (−0.784 − 0.620i)3-s + (0.900 + 0.435i)4-s + (0.763 + 0.645i)5-s + (−0.626 − 0.779i)6-s + (−0.510 + 0.510i)7-s + (0.780 + 0.625i)8-s + (0.231 + 0.972i)9-s + (0.600 + 0.799i)10-s + 1.14·11-s + (−0.436 − 0.899i)12-s + (1.13 − 1.13i)13-s + (−0.611 + 0.383i)14-s + (−0.198 − 0.980i)15-s + (0.620 + 0.784i)16-s + (0.591 + 0.591i)17-s + ⋯ |
Λ(s)=(=(120s/2ΓC(s)L(s)(0.856−0.515i)Λ(4−s)
Λ(s)=(=(120s/2ΓC(s+3/2)L(s)(0.856−0.515i)Λ(1−s)
Degree: |
2 |
Conductor: |
120
= 23⋅3⋅5
|
Sign: |
0.856−0.515i
|
Analytic conductor: |
7.08022 |
Root analytic conductor: |
2.66087 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ120(53,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 120, ( :3/2), 0.856−0.515i)
|
Particular Values
L(2) |
≈ |
2.51219+0.697319i |
L(21) |
≈ |
2.51219+0.697319i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−2.75−0.631i)T |
| 3 | 1+(4.07+3.22i)T |
| 5 | 1+(−8.53−7.21i)T |
good | 7 | 1+(9.44−9.44i)T−343iT2 |
| 11 | 1−41.6T+1.33e3T2 |
| 13 | 1+(−53.3+53.3i)T−2.19e3iT2 |
| 17 | 1+(−41.4−41.4i)T+4.91e3iT2 |
| 19 | 1+145.T+6.85e3T2 |
| 23 | 1+(−27.2+27.2i)T−1.21e4iT2 |
| 29 | 1−107.iT−2.43e4T2 |
| 31 | 1+151.T+2.97e4T2 |
| 37 | 1+(284.+284.i)T+5.06e4iT2 |
| 41 | 1+203.iT−6.89e4T2 |
| 43 | 1+(−194.+194.i)T−7.95e4iT2 |
| 47 | 1+(197.+197.i)T+1.03e5iT2 |
| 53 | 1+(202.+202.i)T+1.48e5iT2 |
| 59 | 1+460.iT−2.05e5T2 |
| 61 | 1−94.5iT−2.26e5T2 |
| 67 | 1+(−258.−258.i)T+3.00e5iT2 |
| 71 | 1+76.8iT−3.57e5T2 |
| 73 | 1+(−14.0−14.0i)T+3.89e5iT2 |
| 79 | 1−221.iT−4.93e5T2 |
| 83 | 1+(38.4+38.4i)T+5.71e5iT2 |
| 89 | 1+230.T+7.04e5T2 |
| 97 | 1+(−758.+758.i)T−9.12e5iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.83497954889581214214004164013, −12.52890147747600200333807332008, −11.06998396097544548602854243494, −10.49991148461570502667701101434, −8.600956317551280758748169977073, −7.00698589514958921732367987330, −6.18801212394933060224684548746, −5.56085316854767039780684320393, −3.59083252447403318562939412125, −1.89143592833242456771719557399,
1.36610216087989832299820429916, 3.77036271635818135562122281891, 4.67755381829312107188720441209, 6.12817145255476764408466081484, 6.62240346253192063301188635000, 9.033454260657084619798557875227, 9.961610717092506640544663989415, 11.02903033371589609284762008626, 11.91672281736447066750399824000, 12.90920310871747642349251331801