L(s) = 1 | + (−2.82 − 0.0740i)2-s + (−4.92 − 1.65i)3-s + (7.98 + 0.418i)4-s + (9.98 − 5.02i)5-s + (13.8 + 5.03i)6-s + (−17.9 + 17.9i)7-s + (−22.5 − 1.77i)8-s + (21.5 + 16.2i)9-s + (−28.6 + 13.4i)10-s − 22.2·11-s + (−38.6 − 15.2i)12-s + (31.5 − 31.5i)13-s + (51.9 − 49.3i)14-s + (−57.5 + 8.27i)15-s + (63.6 + 6.68i)16-s + (17.9 + 17.9i)17-s + ⋯ |
L(s) = 1 | + (−0.999 − 0.0261i)2-s + (−0.948 − 0.317i)3-s + (0.998 + 0.0523i)4-s + (0.893 − 0.449i)5-s + (0.939 + 0.342i)6-s + (−0.967 + 0.967i)7-s + (−0.996 − 0.0784i)8-s + (0.798 + 0.602i)9-s + (−0.904 + 0.425i)10-s − 0.609·11-s + (−0.930 − 0.366i)12-s + (0.673 − 0.673i)13-s + (0.992 − 0.941i)14-s + (−0.989 + 0.142i)15-s + (0.994 + 0.104i)16-s + (0.255 + 0.255i)17-s + ⋯ |
Λ(s)=(=(120s/2ΓC(s)L(s)(0.882+0.469i)Λ(4−s)
Λ(s)=(=(120s/2ΓC(s+3/2)L(s)(0.882+0.469i)Λ(1−s)
Degree: |
2 |
Conductor: |
120
= 23⋅3⋅5
|
Sign: |
0.882+0.469i
|
Analytic conductor: |
7.08022 |
Root analytic conductor: |
2.66087 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ120(53,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 120, ( :3/2), 0.882+0.469i)
|
Particular Values
L(2) |
≈ |
0.777751−0.194148i |
L(21) |
≈ |
0.777751−0.194148i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(2.82+0.0740i)T |
| 3 | 1+(4.92+1.65i)T |
| 5 | 1+(−9.98+5.02i)T |
good | 7 | 1+(17.9−17.9i)T−343iT2 |
| 11 | 1+22.2T+1.33e3T2 |
| 13 | 1+(−31.5+31.5i)T−2.19e3iT2 |
| 17 | 1+(−17.9−17.9i)T+4.91e3iT2 |
| 19 | 1−149.T+6.85e3T2 |
| 23 | 1+(−44.6+44.6i)T−1.21e4iT2 |
| 29 | 1+145.iT−2.43e4T2 |
| 31 | 1−102.T+2.97e4T2 |
| 37 | 1+(−2.90−2.90i)T+5.06e4iT2 |
| 41 | 1+163.iT−6.89e4T2 |
| 43 | 1+(−251.+251.i)T−7.95e4iT2 |
| 47 | 1+(−269.−269.i)T+1.03e5iT2 |
| 53 | 1+(−411.−411.i)T+1.48e5iT2 |
| 59 | 1+91.0iT−2.05e5T2 |
| 61 | 1−602.iT−2.26e5T2 |
| 67 | 1+(571.+571.i)T+3.00e5iT2 |
| 71 | 1−802.iT−3.57e5T2 |
| 73 | 1+(−348.−348.i)T+3.89e5iT2 |
| 79 | 1+923.iT−4.93e5T2 |
| 83 | 1+(501.+501.i)T+5.71e5iT2 |
| 89 | 1+178.T+7.04e5T2 |
| 97 | 1+(82.1−82.1i)T−9.12e5iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.62056383603708346127722188842, −11.91833781574543455206229966855, −10.58537404779568957370263785012, −9.827834564367489941250252943530, −8.827125660357668945137898236467, −7.45129559398175102098756576485, −6.03778993174659842786933682298, −5.58637129313186704313401665445, −2.65576780959218174488410195866, −0.885189319556432306781799910127,
1.04296968292396136023994196959, 3.28415816451694882838693650965, 5.49034475729711459923900213021, 6.59763545416809245685090915059, 7.32921804724710367404631299494, 9.318156618231400206499904181299, 9.959194569942108880227522698009, 10.71703284602521542850939067199, 11.63771492675840689153463538889, 12.99713693109497052953720667639