L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.797 + 0.460i)3-s + (−0.499 − 0.866i)4-s + (0.866 + 0.5i)5-s + 0.920i·6-s + (0.0419 − 2.64i)7-s − 0.999·8-s + (−1.07 + 1.86i)9-s + (0.866 − 0.499i)10-s + (−0.406 + 0.234i)11-s + (0.797 + 0.460i)12-s − 6.11·13-s + (−2.27 − 1.35i)14-s − 0.920·15-s + (−0.5 + 0.866i)16-s + (3.44 + 2.26i)17-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (−0.460 + 0.265i)3-s + (−0.249 − 0.433i)4-s + (0.387 + 0.223i)5-s + 0.375i·6-s + (0.0158 − 0.999i)7-s − 0.353·8-s + (−0.358 + 0.621i)9-s + (0.273 − 0.158i)10-s + (−0.122 + 0.0707i)11-s + (0.230 + 0.132i)12-s − 1.69·13-s + (−0.606 − 0.363i)14-s − 0.237·15-s + (−0.125 + 0.216i)16-s + (0.836 + 0.548i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1190 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.492 - 0.870i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1190 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.492 - 0.870i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.2948023155\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2948023155\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 5 | \( 1 + (-0.866 - 0.5i)T \) |
| 7 | \( 1 + (-0.0419 + 2.64i)T \) |
| 17 | \( 1 + (-3.44 - 2.26i)T \) |
good | 3 | \( 1 + (0.797 - 0.460i)T + (1.5 - 2.59i)T^{2} \) |
| 11 | \( 1 + (0.406 - 0.234i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + 6.11T + 13T^{2} \) |
| 19 | \( 1 + (2.14 - 3.71i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (5.86 + 3.38i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 3.33iT - 29T^{2} \) |
| 31 | \( 1 + (1.17 - 0.680i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-2.05 - 1.18i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 1.14iT - 41T^{2} \) |
| 43 | \( 1 + 6.74T + 43T^{2} \) |
| 47 | \( 1 + (3.40 - 5.89i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (1.57 + 2.72i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (0.167 + 0.290i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.23 - 1.86i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.63 - 2.83i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 2.44iT - 71T^{2} \) |
| 73 | \( 1 + (9.02 - 5.21i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (11.1 + 6.45i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 8.25T + 83T^{2} \) |
| 89 | \( 1 + (8.57 - 14.8i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 3.37iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.10577046659691546442011420885, −9.819337735397381263072212507323, −8.317669773779553693763912161841, −7.60512434302201766632563400876, −6.54498593367744201081107364794, −5.61605063736604373651365970258, −4.82608207733140225006049714799, −4.02581819057438872553321994774, −2.81616041316738383365281853632, −1.72438078188395757091564503161,
0.11004928599745489978186610126, 2.16521296157738051768193436133, 3.19408932940991878874565944790, 4.65312851970339888143959291785, 5.42359723723620428378063120325, 5.96720692808366344845870090862, 6.87812551890025652940069111479, 7.70304981156403451377442061502, 8.632053950534602216006103889588, 9.474611097545561341642529341627