Properties

Label 2-1190-1.1-c1-0-28
Degree $2$
Conductor $1190$
Sign $-1$
Analytic cond. $9.50219$
Root an. cond. $3.08256$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 1.56·3-s + 4-s − 5-s − 1.56·6-s − 7-s − 8-s − 0.561·9-s + 10-s + 2·11-s + 1.56·12-s − 5.56·13-s + 14-s − 1.56·15-s + 16-s − 17-s + 0.561·18-s + 3.56·19-s − 20-s − 1.56·21-s − 2·22-s − 3.12·23-s − 1.56·24-s + 25-s + 5.56·26-s − 5.56·27-s − 28-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.901·3-s + 0.5·4-s − 0.447·5-s − 0.637·6-s − 0.377·7-s − 0.353·8-s − 0.187·9-s + 0.316·10-s + 0.603·11-s + 0.450·12-s − 1.54·13-s + 0.267·14-s − 0.403·15-s + 0.250·16-s − 0.242·17-s + 0.132·18-s + 0.817·19-s − 0.223·20-s − 0.340·21-s − 0.426·22-s − 0.651·23-s − 0.318·24-s + 0.200·25-s + 1.09·26-s − 1.07·27-s − 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1190 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1190 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1190\)    =    \(2 \cdot 5 \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(9.50219\)
Root analytic conductor: \(3.08256\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1190,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
5 \( 1 + T \)
7 \( 1 + T \)
17 \( 1 + T \)
good3 \( 1 - 1.56T + 3T^{2} \)
11 \( 1 - 2T + 11T^{2} \)
13 \( 1 + 5.56T + 13T^{2} \)
19 \( 1 - 3.56T + 19T^{2} \)
23 \( 1 + 3.12T + 23T^{2} \)
29 \( 1 + 1.56T + 29T^{2} \)
31 \( 1 + 8.68T + 31T^{2} \)
37 \( 1 - 3.12T + 37T^{2} \)
41 \( 1 - 2T + 41T^{2} \)
43 \( 1 + 10.2T + 43T^{2} \)
47 \( 1 + 2.43T + 47T^{2} \)
53 \( 1 + 0.438T + 53T^{2} \)
59 \( 1 + 14.6T + 59T^{2} \)
61 \( 1 + 4.43T + 61T^{2} \)
67 \( 1 - 6.24T + 67T^{2} \)
71 \( 1 - 6.43T + 71T^{2} \)
73 \( 1 + 4.43T + 73T^{2} \)
79 \( 1 + 4T + 79T^{2} \)
83 \( 1 - 2T + 83T^{2} \)
89 \( 1 - 13.8T + 89T^{2} \)
97 \( 1 - 2.68T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.430494118105506407119418386457, −8.604277038773813775104761511625, −7.71385327201993143404155243858, −7.27819061717395179840091709859, −6.21095265235112476672909097048, −5.04331127141537554466308599641, −3.75772783549148859762998830016, −2.93420196328833310057657339218, −1.89492050422220215976475606174, 0, 1.89492050422220215976475606174, 2.93420196328833310057657339218, 3.75772783549148859762998830016, 5.04331127141537554466308599641, 6.21095265235112476672909097048, 7.27819061717395179840091709859, 7.71385327201993143404155243858, 8.604277038773813775104761511625, 9.430494118105506407119418386457

Graph of the $Z$-function along the critical line