Properties

Label 2-1190-1.1-c1-0-26
Degree $2$
Conductor $1190$
Sign $1$
Analytic cond. $9.50219$
Root an. cond. $3.08256$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 2.87·3-s + 4-s − 5-s + 2.87·6-s + 7-s + 8-s + 5.24·9-s − 10-s + 3.57·11-s + 2.87·12-s − 5.82·13-s + 14-s − 2.87·15-s + 16-s + 17-s + 5.24·18-s + 1.49·19-s − 20-s + 2.87·21-s + 3.57·22-s + 1.79·23-s + 2.87·24-s + 25-s − 5.82·26-s + 6.44·27-s + 28-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.65·3-s + 0.5·4-s − 0.447·5-s + 1.17·6-s + 0.377·7-s + 0.353·8-s + 1.74·9-s − 0.316·10-s + 1.07·11-s + 0.828·12-s − 1.61·13-s + 0.267·14-s − 0.741·15-s + 0.250·16-s + 0.242·17-s + 1.23·18-s + 0.343·19-s − 0.223·20-s + 0.626·21-s + 0.762·22-s + 0.374·23-s + 0.586·24-s + 0.200·25-s − 1.14·26-s + 1.24·27-s + 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1190 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1190 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1190\)    =    \(2 \cdot 5 \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(9.50219\)
Root analytic conductor: \(3.08256\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1190,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.300446474\)
\(L(\frac12)\) \(\approx\) \(4.300446474\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
5 \( 1 + T \)
7 \( 1 - T \)
17 \( 1 - T \)
good3 \( 1 - 2.87T + 3T^{2} \)
11 \( 1 - 3.57T + 11T^{2} \)
13 \( 1 + 5.82T + 13T^{2} \)
19 \( 1 - 1.49T + 19T^{2} \)
23 \( 1 - 1.79T + 23T^{2} \)
29 \( 1 + 3.61T + 29T^{2} \)
31 \( 1 + 4.65T + 31T^{2} \)
37 \( 1 - 9.15T + 37T^{2} \)
41 \( 1 + 7.31T + 41T^{2} \)
43 \( 1 + 3.54T + 43T^{2} \)
47 \( 1 + 8.61T + 47T^{2} \)
53 \( 1 - 10.7T + 53T^{2} \)
59 \( 1 - 6.02T + 59T^{2} \)
61 \( 1 + 8.41T + 61T^{2} \)
67 \( 1 + 5.31T + 67T^{2} \)
71 \( 1 + 15.3T + 71T^{2} \)
73 \( 1 + 7.07T + 73T^{2} \)
79 \( 1 - 14.2T + 79T^{2} \)
83 \( 1 - 14.3T + 83T^{2} \)
89 \( 1 - 9.30T + 89T^{2} \)
97 \( 1 - 11.0T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.523188959015038076715367548896, −8.998115656325536214620217947501, −7.933027583681415172793057923537, −7.46221445999968961835252791928, −6.68099932871645482458360066568, −5.22102260530054301459941989858, −4.32357034768631235051266159607, −3.54916329606979422882413236528, −2.68724760503198968132719484004, −1.66033948874283463927320799532, 1.66033948874283463927320799532, 2.68724760503198968132719484004, 3.54916329606979422882413236528, 4.32357034768631235051266159607, 5.22102260530054301459941989858, 6.68099932871645482458360066568, 7.46221445999968961835252791928, 7.933027583681415172793057923537, 8.998115656325536214620217947501, 9.523188959015038076715367548896

Graph of the $Z$-function along the critical line