| L(s) = 1 | + (−4.63 − 4.63i)2-s + (−5.03 − 12.1i)3-s + 26.8i·4-s + (−36.7 + 15.2i)5-s + (−32.9 + 79.6i)6-s + (−36.3 − 32.8i)7-s + (50.4 − 50.4i)8-s + (−65.1 + 65.1i)9-s + (240. + 99.8i)10-s + (−37.0 − 15.3i)11-s + (326. − 135. i)12-s − 90.8·13-s + (16.2 + 320. i)14-s + (370. + 370. i)15-s − 37.0·16-s + (23.6 − 288. i)17-s + ⋯ |
| L(s) = 1 | + (−1.15 − 1.15i)2-s + (−0.559 − 1.35i)3-s + 1.68i·4-s + (−1.47 + 0.609i)5-s + (−0.915 + 2.21i)6-s + (−0.741 − 0.670i)7-s + (0.788 − 0.788i)8-s + (−0.804 + 0.804i)9-s + (2.40 + 0.998i)10-s + (−0.306 − 0.126i)11-s + (2.27 − 0.940i)12-s − 0.537·13-s + (0.0827 + 1.63i)14-s + (1.64 + 1.64i)15-s − 0.144·16-s + (0.0817 − 0.996i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 119 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.650 + 0.759i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 119 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (0.650 + 0.759i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{5}{2})\) |
\(\approx\) |
\(0.0390724 - 0.0179952i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.0390724 - 0.0179952i\) |
| \(L(3)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 7 | \( 1 + (36.3 + 32.8i)T \) |
| 17 | \( 1 + (-23.6 + 288. i)T \) |
| good | 2 | \( 1 + (4.63 + 4.63i)T + 16iT^{2} \) |
| 3 | \( 1 + (5.03 + 12.1i)T + (-57.2 + 57.2i)T^{2} \) |
| 5 | \( 1 + (36.7 - 15.2i)T + (441. - 441. i)T^{2} \) |
| 11 | \( 1 + (37.0 + 15.3i)T + (1.03e4 + 1.03e4i)T^{2} \) |
| 13 | \( 1 + 90.8T + 2.85e4T^{2} \) |
| 19 | \( 1 + (234. - 234. i)T - 1.30e5iT^{2} \) |
| 23 | \( 1 + (877. + 363. i)T + (1.97e5 + 1.97e5i)T^{2} \) |
| 29 | \( 1 + (-107. - 259. i)T + (-5.00e5 + 5.00e5i)T^{2} \) |
| 31 | \( 1 + (421. + 1.01e3i)T + (-6.53e5 + 6.53e5i)T^{2} \) |
| 37 | \( 1 + (-1.93e3 + 799. i)T + (1.32e6 - 1.32e6i)T^{2} \) |
| 41 | \( 1 + (377. + 156. i)T + (1.99e6 + 1.99e6i)T^{2} \) |
| 43 | \( 1 + (546. - 546. i)T - 3.41e6iT^{2} \) |
| 47 | \( 1 + 763.T + 4.87e6T^{2} \) |
| 53 | \( 1 + (468. + 468. i)T + 7.89e6iT^{2} \) |
| 59 | \( 1 + (4.27e3 + 4.27e3i)T + 1.21e7iT^{2} \) |
| 61 | \( 1 + (-4.67e3 - 1.93e3i)T + (9.79e6 + 9.79e6i)T^{2} \) |
| 67 | \( 1 - 5.55e3T + 2.01e7T^{2} \) |
| 71 | \( 1 + (2.70e3 - 1.11e3i)T + (1.79e7 - 1.79e7i)T^{2} \) |
| 73 | \( 1 + (-5.47e3 + 2.26e3i)T + (2.00e7 - 2.00e7i)T^{2} \) |
| 79 | \( 1 + (-172. - 71.2i)T + (2.75e7 + 2.75e7i)T^{2} \) |
| 83 | \( 1 + (-1.07e3 + 1.07e3i)T - 4.74e7iT^{2} \) |
| 89 | \( 1 - 1.11e4T + 6.27e7T^{2} \) |
| 97 | \( 1 + (-3.09e3 + 1.28e3i)T + (6.25e7 - 6.25e7i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.24901912831820515229236998638, −11.59762302933463832052019612996, −10.78528458098960992162638684996, −9.736643858505764537963607856656, −7.991857249372951957160215193413, −7.59964912369846780830472547338, −6.45765135150150823614387513966, −3.81079143312198438174636598356, −2.40140780933885535049378596013, −0.53575643847658641724002097621,
0.06215825686994333630263539884, 3.84052880503324417400646600839, 5.09617690294076179727491213484, 6.29007482823584608565987083916, 7.76194524701268348950931323254, 8.626923885164325094624002350491, 9.577611956526747376270649197870, 10.40960101630553320943087085573, 11.64758727541669781656157098386, 12.65197519326771303100828567504