| L(s) = 1 | + (1.07 + 1.85i)2-s + (−3.88 + 6.73i)3-s + (5.69 − 9.86i)4-s + (−18.2 − 31.6i)5-s − 16.7·6-s + (−42.5 + 24.3i)7-s + 58.8·8-s + (10.2 + 17.7i)9-s + (39.2 − 68.0i)10-s + (188. + 108. i)11-s + (44.2 + 76.7i)12-s + 210. i·13-s + (−90.9 − 52.8i)14-s + 284.·15-s + (−27.9 − 48.3i)16-s + (45.8 + 285. i)17-s + ⋯ |
| L(s) = 1 | + (0.268 + 0.464i)2-s + (−0.432 + 0.748i)3-s + (0.355 − 0.616i)4-s + (−0.731 − 1.26i)5-s − 0.464·6-s + (−0.867 + 0.497i)7-s + 0.919·8-s + (0.126 + 0.219i)9-s + (0.392 − 0.680i)10-s + (1.55 + 0.898i)11-s + (0.307 + 0.532i)12-s + 1.24i·13-s + (−0.464 − 0.269i)14-s + 1.26·15-s + (−0.109 − 0.189i)16-s + (0.158 + 0.987i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 119 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.237 - 0.971i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 119 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (0.237 - 0.971i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{5}{2})\) |
\(\approx\) |
\(1.32894 + 1.04262i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.32894 + 1.04262i\) |
| \(L(3)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 7 | \( 1 + (42.5 - 24.3i)T \) |
| 17 | \( 1 + (-45.8 - 285. i)T \) |
| good | 2 | \( 1 + (-1.07 - 1.85i)T + (-8 + 13.8i)T^{2} \) |
| 3 | \( 1 + (3.88 - 6.73i)T + (-40.5 - 70.1i)T^{2} \) |
| 5 | \( 1 + (18.2 + 31.6i)T + (-312.5 + 541. i)T^{2} \) |
| 11 | \( 1 + (-188. - 108. i)T + (7.32e3 + 1.26e4i)T^{2} \) |
| 13 | \( 1 - 210. iT - 2.85e4T^{2} \) |
| 19 | \( 1 + (-348. + 201. i)T + (6.51e4 - 1.12e5i)T^{2} \) |
| 23 | \( 1 + (-458. + 264. i)T + (1.39e5 - 2.42e5i)T^{2} \) |
| 29 | \( 1 - 236. iT - 7.07e5T^{2} \) |
| 31 | \( 1 + (235. - 408. i)T + (-4.61e5 - 7.99e5i)T^{2} \) |
| 37 | \( 1 + (68.1 - 39.3i)T + (9.37e5 - 1.62e6i)T^{2} \) |
| 41 | \( 1 - 2.49e3T + 2.82e6T^{2} \) |
| 43 | \( 1 - 1.67e3T + 3.41e6T^{2} \) |
| 47 | \( 1 + (2.95e3 - 1.70e3i)T + (2.43e6 - 4.22e6i)T^{2} \) |
| 53 | \( 1 + (1.95e3 - 3.38e3i)T + (-3.94e6 - 6.83e6i)T^{2} \) |
| 59 | \( 1 + (3.49e3 + 2.01e3i)T + (6.05e6 + 1.04e7i)T^{2} \) |
| 61 | \( 1 + (-1.25e3 - 2.16e3i)T + (-6.92e6 + 1.19e7i)T^{2} \) |
| 67 | \( 1 + (2.18e3 - 3.78e3i)T + (-1.00e7 - 1.74e7i)T^{2} \) |
| 71 | \( 1 - 2.32e3iT - 2.54e7T^{2} \) |
| 73 | \( 1 + (-2.89e3 + 5.00e3i)T + (-1.41e7 - 2.45e7i)T^{2} \) |
| 79 | \( 1 + (664. - 383. i)T + (1.94e7 - 3.37e7i)T^{2} \) |
| 83 | \( 1 + 1.58e3iT - 4.74e7T^{2} \) |
| 89 | \( 1 + (-215. + 124. i)T + (3.13e7 - 5.43e7i)T^{2} \) |
| 97 | \( 1 - 5.00e3T + 8.85e7T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.85249367146940933424722934844, −11.98749743536990155341739078297, −11.03039471416870174884450450278, −9.596304904586223654590735983666, −9.074661445215613730214170717157, −7.27461524316210713348099741322, −6.16675836043385096191326268041, −4.83683602190666702000490682628, −4.17202675020428360830060979430, −1.38931471257944332122532830043,
0.817955439651870121892259860050, 3.15906966586644220893153718112, 3.64058307040135578077240368967, 6.18187508790106735071599072546, 7.08194025422475795290481827194, 7.68932829848989825005934936403, 9.611649808888933350842455756833, 11.00121895586634083460045838102, 11.55100970131628385240997633199, 12.38973291290881576867686101486