Properties

Label 2-119-1.1-c1-0-4
Degree $2$
Conductor $119$
Sign $1$
Analytic cond. $0.950219$
Root an. cond. $0.974792$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.877·2-s + 0.907·3-s − 1.22·4-s + 3.03·5-s + 0.796·6-s − 7-s − 2.83·8-s − 2.17·9-s + 2.66·10-s + 4.78·11-s − 1.11·12-s − 4.39·13-s − 0.877·14-s + 2.75·15-s − 0.0297·16-s + 17-s − 1.91·18-s − 2.64·19-s − 3.73·20-s − 0.907·21-s + 4.19·22-s − 8.45·23-s − 2.57·24-s + 4.23·25-s − 3.86·26-s − 4.69·27-s + 1.22·28-s + ⋯
L(s)  = 1  + 0.620·2-s + 0.523·3-s − 0.614·4-s + 1.35·5-s + 0.325·6-s − 0.377·7-s − 1.00·8-s − 0.725·9-s + 0.843·10-s + 1.44·11-s − 0.322·12-s − 1.22·13-s − 0.234·14-s + 0.711·15-s − 0.00743·16-s + 0.242·17-s − 0.450·18-s − 0.606·19-s − 0.835·20-s − 0.198·21-s + 0.894·22-s − 1.76·23-s − 0.525·24-s + 0.846·25-s − 0.757·26-s − 0.904·27-s + 0.232·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 119 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 119 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(119\)    =    \(7 \cdot 17\)
Sign: $1$
Analytic conductor: \(0.950219\)
Root analytic conductor: \(0.974792\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 119,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.512251103\)
\(L(\frac12)\) \(\approx\) \(1.512251103\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 + T \)
17 \( 1 - T \)
good2 \( 1 - 0.877T + 2T^{2} \)
3 \( 1 - 0.907T + 3T^{2} \)
5 \( 1 - 3.03T + 5T^{2} \)
11 \( 1 - 4.78T + 11T^{2} \)
13 \( 1 + 4.39T + 13T^{2} \)
19 \( 1 + 2.64T + 19T^{2} \)
23 \( 1 + 8.45T + 23T^{2} \)
29 \( 1 - 7.04T + 29T^{2} \)
31 \( 1 + 3.42T + 31T^{2} \)
37 \( 1 - 9.66T + 37T^{2} \)
41 \( 1 - 1.33T + 41T^{2} \)
43 \( 1 - 2.52T + 43T^{2} \)
47 \( 1 + 5.57T + 47T^{2} \)
53 \( 1 - 5.17T + 53T^{2} \)
59 \( 1 - 9.28T + 59T^{2} \)
61 \( 1 - 6.66T + 61T^{2} \)
67 \( 1 - 5.28T + 67T^{2} \)
71 \( 1 + 11.9T + 71T^{2} \)
73 \( 1 - 12.7T + 73T^{2} \)
79 \( 1 - 1.94T + 79T^{2} \)
83 \( 1 + 4.58T + 83T^{2} \)
89 \( 1 + 13.3T + 89T^{2} \)
97 \( 1 + 15.1T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.75877616833833164512347688428, −12.70734124698541366659445798498, −11.79685478004627521729859500319, −9.891983029402487103373071879317, −9.451784805952369369026679333158, −8.377402703273289579004695071944, −6.45301199625848528619851078978, −5.59441068093551226192704092374, −4.08090296755249678835296246878, −2.49818869742691818855469877715, 2.49818869742691818855469877715, 4.08090296755249678835296246878, 5.59441068093551226192704092374, 6.45301199625848528619851078978, 8.377402703273289579004695071944, 9.451784805952369369026679333158, 9.891983029402487103373071879317, 11.79685478004627521729859500319, 12.70734124698541366659445798498, 13.75877616833833164512347688428

Graph of the $Z$-function along the critical line