L(s) = 1 | + 1.61·3-s − 0.618·5-s + 1.61·9-s − 0.618·11-s + 1.61·13-s − 1.00·15-s − 1.61·23-s − 0.618·25-s + 27-s + 1.61·29-s + 0.618·31-s − 1.00·33-s − 37-s + 2.61·39-s − 1.61·41-s − 1.00·45-s + 49-s + 0.381·55-s − 0.618·61-s − 1.00·65-s − 0.618·67-s − 2.61·69-s + 0.618·73-s − 0.999·75-s − 1.61·79-s − 2·83-s + 2.61·87-s + ⋯ |
L(s) = 1 | + 1.61·3-s − 0.618·5-s + 1.61·9-s − 0.618·11-s + 1.61·13-s − 1.00·15-s − 1.61·23-s − 0.618·25-s + 27-s + 1.61·29-s + 0.618·31-s − 1.00·33-s − 37-s + 2.61·39-s − 1.61·41-s − 1.00·45-s + 49-s + 0.381·55-s − 0.618·61-s − 1.00·65-s − 0.618·67-s − 2.61·69-s + 0.618·73-s − 0.999·75-s − 1.61·79-s − 2·83-s + 2.61·87-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1184 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1184 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.618333454\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.618333454\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 37 | \( 1 + T \) |
good | 3 | \( 1 - 1.61T + T^{2} \) |
| 5 | \( 1 + 0.618T + T^{2} \) |
| 7 | \( 1 - T^{2} \) |
| 11 | \( 1 + 0.618T + T^{2} \) |
| 13 | \( 1 - 1.61T + T^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + 1.61T + T^{2} \) |
| 29 | \( 1 - 1.61T + T^{2} \) |
| 31 | \( 1 - 0.618T + T^{2} \) |
| 41 | \( 1 + 1.61T + T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + 0.618T + T^{2} \) |
| 67 | \( 1 + 0.618T + T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - 0.618T + T^{2} \) |
| 79 | \( 1 + 1.61T + T^{2} \) |
| 83 | \( 1 + 2T + T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.968219034448885951442668954150, −8.790561210111846589270321201821, −8.354266605023914429546947348860, −7.88064426810386678526792029352, −6.87636165876594307903175770707, −5.83156639375107175493975019924, −4.39598853167543765742219262920, −3.68336620594756791501151567073, −2.89120194444196721567905865826, −1.69653568636025266031598342389,
1.69653568636025266031598342389, 2.89120194444196721567905865826, 3.68336620594756791501151567073, 4.39598853167543765742219262920, 5.83156639375107175493975019924, 6.87636165876594307903175770707, 7.88064426810386678526792029352, 8.354266605023914429546947348860, 8.790561210111846589270321201821, 9.968219034448885951442668954150