Properties

Label 2-1184-1.1-c1-0-3
Degree $2$
Conductor $1184$
Sign $1$
Analytic cond. $9.45428$
Root an. cond. $3.07478$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.39·3-s + 0.805·5-s − 1.94·7-s + 8.49·9-s − 0.661·11-s − 5.64·13-s − 2.73·15-s + 2·17-s + 2.15·19-s + 6.60·21-s − 3.59·23-s − 4.35·25-s − 18.6·27-s − 5.64·29-s + 6.32·31-s + 2.24·33-s − 1.56·35-s + 37-s + 19.1·39-s + 4.95·41-s + 5.04·43-s + 6.84·45-s + 3.51·47-s − 3.21·49-s − 6.78·51-s + 6.39·53-s − 0.532·55-s + ⋯
L(s)  = 1  − 1.95·3-s + 0.360·5-s − 0.735·7-s + 2.83·9-s − 0.199·11-s − 1.56·13-s − 0.704·15-s + 0.485·17-s + 0.493·19-s + 1.44·21-s − 0.749·23-s − 0.870·25-s − 3.58·27-s − 1.04·29-s + 1.13·31-s + 0.390·33-s − 0.264·35-s + 0.164·37-s + 3.06·39-s + 0.773·41-s + 0.768·43-s + 1.02·45-s + 0.512·47-s − 0.458·49-s − 0.949·51-s + 0.878·53-s − 0.0717·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1184 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1184 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1184\)    =    \(2^{5} \cdot 37\)
Sign: $1$
Analytic conductor: \(9.45428\)
Root analytic conductor: \(3.07478\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1184,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5915976114\)
\(L(\frac12)\) \(\approx\) \(0.5915976114\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
37 \( 1 - T \)
good3 \( 1 + 3.39T + 3T^{2} \)
5 \( 1 - 0.805T + 5T^{2} \)
7 \( 1 + 1.94T + 7T^{2} \)
11 \( 1 + 0.661T + 11T^{2} \)
13 \( 1 + 5.64T + 13T^{2} \)
17 \( 1 - 2T + 17T^{2} \)
19 \( 1 - 2.15T + 19T^{2} \)
23 \( 1 + 3.59T + 23T^{2} \)
29 \( 1 + 5.64T + 29T^{2} \)
31 \( 1 - 6.32T + 31T^{2} \)
41 \( 1 - 4.95T + 41T^{2} \)
43 \( 1 - 5.04T + 43T^{2} \)
47 \( 1 - 3.51T + 47T^{2} \)
53 \( 1 - 6.39T + 53T^{2} \)
59 \( 1 - 14.3T + 59T^{2} \)
61 \( 1 - 3.19T + 61T^{2} \)
67 \( 1 + 13.6T + 67T^{2} \)
71 \( 1 - 10.2T + 71T^{2} \)
73 \( 1 - 13.4T + 73T^{2} \)
79 \( 1 + 3.59T + 79T^{2} \)
83 \( 1 - 4.83T + 83T^{2} \)
89 \( 1 - 5.51T + 89T^{2} \)
97 \( 1 - 2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.892362224248710824308465579481, −9.507460432277842887079740922327, −7.71539560381428929536769911814, −7.13413127659600572072033874716, −6.20208334371818918202344312218, −5.62969489610139524966436442336, −4.89608366293133176570030937882, −3.89092634801377686919165730736, −2.21866623721386306547064900798, −0.61698057409065557564211508756, 0.61698057409065557564211508756, 2.21866623721386306547064900798, 3.89092634801377686919165730736, 4.89608366293133176570030937882, 5.62969489610139524966436442336, 6.20208334371818918202344312218, 7.13413127659600572072033874716, 7.71539560381428929536769911814, 9.507460432277842887079740922327, 9.892362224248710824308465579481

Graph of the $Z$-function along the critical line