L(s) = 1 | − 2.22i·2-s + 0.549·3-s − 2.92·4-s + 4.22i·5-s − 1.22i·6-s − i·7-s + 2.06i·8-s − 2.69·9-s + 9.36·10-s − 0.549i·11-s − 1.60·12-s − 2.22·14-s + 2.31i·15-s − 1.28·16-s + 2.37·17-s + 5.98i·18-s + ⋯ |
L(s) = 1 | − 1.56i·2-s + 0.317·3-s − 1.46·4-s + 1.88i·5-s − 0.498i·6-s − 0.377i·7-s + 0.728i·8-s − 0.899·9-s + 2.96·10-s − 0.165i·11-s − 0.464·12-s − 0.593·14-s + 0.598i·15-s − 0.320·16-s + 0.576·17-s + 1.41i·18-s + ⋯ |
Λ(s)=(=(1183s/2ΓC(s)L(s)(0.554−0.832i)Λ(2−s)
Λ(s)=(=(1183s/2ΓC(s+1/2)L(s)(0.554−0.832i)Λ(1−s)
Degree: |
2 |
Conductor: |
1183
= 7⋅132
|
Sign: |
0.554−0.832i
|
Analytic conductor: |
9.44630 |
Root analytic conductor: |
3.07348 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1183(337,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1183, ( :1/2), 0.554−0.832i)
|
Particular Values
L(1) |
≈ |
0.6891263636 |
L(21) |
≈ |
0.6891263636 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1+iT |
| 13 | 1 |
good | 2 | 1+2.22iT−2T2 |
| 3 | 1−0.549T+3T2 |
| 5 | 1−4.22iT−5T2 |
| 11 | 1+0.549iT−11T2 |
| 17 | 1−2.37T+17T2 |
| 19 | 1−3.61iT−19T2 |
| 23 | 1+5.81T+23T2 |
| 29 | 1+3.59T+29T2 |
| 31 | 1−5.14iT−31T2 |
| 37 | 1+0.329iT−37T2 |
| 41 | 1−6.29iT−41T2 |
| 43 | 1+3.22T+43T2 |
| 47 | 1−8.20iT−47T2 |
| 53 | 1−2.65T+53T2 |
| 59 | 1+1.80iT−59T2 |
| 61 | 1−0.609T+61T2 |
| 67 | 1+10.3iT−67T2 |
| 71 | 1−11.1iT−71T2 |
| 73 | 1−4.90iT−73T2 |
| 79 | 1+14.0T+79T2 |
| 83 | 1−5.73iT−83T2 |
| 89 | 1+7.46iT−89T2 |
| 97 | 1−6.84iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.09561198270610859367309771999, −9.595339848450707508653893009574, −8.358932539305314319983662478075, −7.56865041467491066494608536648, −6.55063514696501701817312474353, −5.68684983047049584526945624676, −4.06603378116059055414201340466, −3.33189292157050453225091944178, −2.80031010405854466933858165534, −1.77481783129762205720600333027,
0.26772572594525316824304681138, 2.10858386739300633156347135544, 3.90088120398658949254749553004, 4.85571104418603014938920748418, 5.54898181080703554846974630671, 6.02403088277351423273605615847, 7.36855432376593242514391273212, 8.077393745146981867233621790219, 8.676925204716452761292030533410, 9.097445927867216656783678059541