L(s) = 1 | − 2.22i·2-s + 0.549·3-s − 2.92·4-s + 4.22i·5-s − 1.22i·6-s − i·7-s + 2.06i·8-s − 2.69·9-s + 9.36·10-s − 0.549i·11-s − 1.60·12-s − 2.22·14-s + 2.31i·15-s − 1.28·16-s + 2.37·17-s + 5.98i·18-s + ⋯ |
L(s) = 1 | − 1.56i·2-s + 0.317·3-s − 1.46·4-s + 1.88i·5-s − 0.498i·6-s − 0.377i·7-s + 0.728i·8-s − 0.899·9-s + 2.96·10-s − 0.165i·11-s − 0.464·12-s − 0.593·14-s + 0.598i·15-s − 0.320·16-s + 0.576·17-s + 1.41i·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1183 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.554 - 0.832i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1183 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.554 - 0.832i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.6891263636\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6891263636\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 + iT \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + 2.22iT - 2T^{2} \) |
| 3 | \( 1 - 0.549T + 3T^{2} \) |
| 5 | \( 1 - 4.22iT - 5T^{2} \) |
| 11 | \( 1 + 0.549iT - 11T^{2} \) |
| 17 | \( 1 - 2.37T + 17T^{2} \) |
| 19 | \( 1 - 3.61iT - 19T^{2} \) |
| 23 | \( 1 + 5.81T + 23T^{2} \) |
| 29 | \( 1 + 3.59T + 29T^{2} \) |
| 31 | \( 1 - 5.14iT - 31T^{2} \) |
| 37 | \( 1 + 0.329iT - 37T^{2} \) |
| 41 | \( 1 - 6.29iT - 41T^{2} \) |
| 43 | \( 1 + 3.22T + 43T^{2} \) |
| 47 | \( 1 - 8.20iT - 47T^{2} \) |
| 53 | \( 1 - 2.65T + 53T^{2} \) |
| 59 | \( 1 + 1.80iT - 59T^{2} \) |
| 61 | \( 1 - 0.609T + 61T^{2} \) |
| 67 | \( 1 + 10.3iT - 67T^{2} \) |
| 71 | \( 1 - 11.1iT - 71T^{2} \) |
| 73 | \( 1 - 4.90iT - 73T^{2} \) |
| 79 | \( 1 + 14.0T + 79T^{2} \) |
| 83 | \( 1 - 5.73iT - 83T^{2} \) |
| 89 | \( 1 + 7.46iT - 89T^{2} \) |
| 97 | \( 1 - 6.84iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.09561198270610859367309771999, −9.595339848450707508653893009574, −8.358932539305314319983662478075, −7.56865041467491066494608536648, −6.55063514696501701817312474353, −5.68684983047049584526945624676, −4.06603378116059055414201340466, −3.33189292157050453225091944178, −2.80031010405854466933858165534, −1.77481783129762205720600333027,
0.26772572594525316824304681138, 2.10858386739300633156347135544, 3.90088120398658949254749553004, 4.85571104418603014938920748418, 5.54898181080703554846974630671, 6.02403088277351423273605615847, 7.36855432376593242514391273212, 8.077393745146981867233621790219, 8.676925204716452761292030533410, 9.097445927867216656783678059541