L(s) = 1 | + (−1.71 − 0.247i)3-s + (1.28 − 2.23i)5-s + (2.87 + 0.849i)9-s + (1.43 − 0.826i)11-s + 5.71i·13-s + (−2.76 + 3.50i)15-s + (3.79 + 6.56i)17-s + (−2.58 − 1.49i)19-s + (0.249 + 0.143i)23-s + (−0.825 − 1.43i)25-s + (−4.72 − 2.16i)27-s − 2.05i·29-s + (5.21 − 3.00i)31-s + (−2.65 + 1.06i)33-s + (−0.877 + 1.51i)37-s + ⋯ |
L(s) = 1 | + (−0.989 − 0.142i)3-s + (0.576 − 0.998i)5-s + (0.959 + 0.283i)9-s + (0.431 − 0.249i)11-s + 1.58i·13-s + (−0.713 + 0.906i)15-s + (0.919 + 1.59i)17-s + (−0.594 − 0.343i)19-s + (0.0519 + 0.0300i)23-s + (−0.165 − 0.286i)25-s + (−0.908 − 0.417i)27-s − 0.382i·29-s + (0.936 − 0.540i)31-s + (−0.462 + 0.184i)33-s + (−0.144 + 0.249i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1176 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.996 + 0.0800i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1176 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.996 + 0.0800i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.366461671\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.366461671\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (1.71 + 0.247i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (-1.28 + 2.23i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-1.43 + 0.826i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 5.71iT - 13T^{2} \) |
| 17 | \( 1 + (-3.79 - 6.56i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (2.58 + 1.49i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.249 - 0.143i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 2.05iT - 29T^{2} \) |
| 31 | \( 1 + (-5.21 + 3.00i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (0.877 - 1.51i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 4.28T + 41T^{2} \) |
| 43 | \( 1 - 2.46T + 43T^{2} \) |
| 47 | \( 1 + (0.186 - 0.323i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-6.73 + 3.88i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-4.89 - 8.48i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (0.889 + 0.513i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (1.18 + 2.04i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 15.6iT - 71T^{2} \) |
| 73 | \( 1 + (-3.30 + 1.90i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-4.56 + 7.89i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 6.65T + 83T^{2} \) |
| 89 | \( 1 + (-7.25 + 12.5i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 4.43iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.795566942254776814665525284684, −9.004379344990147782620411774864, −8.246581143504843118838545777042, −7.07666049749654006584373827759, −6.20596757548200822793284914480, −5.69629845454640892129814724318, −4.59611209724695182873255039839, −3.99627098237960020000731742749, −1.98327676795176062405360476950, −1.08303094233174441607236722096,
0.874467150911573995404165328762, 2.54367280975286062005568915723, 3.53425243490957834990092606322, 4.87181580910212344270824061395, 5.60470696239927634516960600007, 6.39016085065651314725619230779, 7.12369833769234519981357359718, 7.915951950892947298588440785589, 9.267797288601785218163513242824, 10.08273642769668311404894337794