| L(s) = 1 | + (−1.02 + 1.39i)3-s + (2.00 + 3.47i)5-s + (−0.900 − 2.86i)9-s + (3.26 + 1.88i)11-s + 4.48i·13-s + (−6.91 − 0.758i)15-s + (−2.05 + 3.56i)17-s + (5.69 − 3.28i)19-s + (4.33 − 2.50i)23-s + (−5.56 + 9.63i)25-s + (4.91 + 1.67i)27-s + 1.23i·29-s + (−0.809 − 0.467i)31-s + (−5.98 + 2.62i)33-s + (−1.01 − 1.75i)37-s + ⋯ |
| L(s) = 1 | + (−0.591 + 0.806i)3-s + (0.897 + 1.55i)5-s + (−0.300 − 0.953i)9-s + (0.984 + 0.568i)11-s + 1.24i·13-s + (−1.78 − 0.195i)15-s + (−0.499 + 0.865i)17-s + (1.30 − 0.753i)19-s + (0.904 − 0.522i)23-s + (−1.11 + 1.92i)25-s + (0.946 + 0.322i)27-s + 0.228i·29-s + (−0.145 − 0.0839i)31-s + (−1.04 + 0.457i)33-s + (−0.166 − 0.288i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1176 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.719 - 0.694i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1176 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.719 - 0.694i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.602152266\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.602152266\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 + (1.02 - 1.39i)T \) |
| 7 | \( 1 \) |
| good | 5 | \( 1 + (-2.00 - 3.47i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-3.26 - 1.88i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 4.48iT - 13T^{2} \) |
| 17 | \( 1 + (2.05 - 3.56i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-5.69 + 3.28i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-4.33 + 2.50i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 1.23iT - 29T^{2} \) |
| 31 | \( 1 + (0.809 + 0.467i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (1.01 + 1.75i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 2.21T + 41T^{2} \) |
| 43 | \( 1 + 3.14T + 43T^{2} \) |
| 47 | \( 1 + (2.92 + 5.07i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (3.95 + 2.28i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-0.982 + 1.70i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-8.00 + 4.62i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (3.88 - 6.72i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 7.97iT - 71T^{2} \) |
| 73 | \( 1 + (12.8 + 7.41i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (1.85 + 3.20i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 9.15T + 83T^{2} \) |
| 89 | \( 1 + (-6.53 - 11.3i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 7.06iT - 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.04016993703550196396472198065, −9.477313364647813016906180513470, −8.862056875057230318059266512778, −7.09301411697651855116039725405, −6.74382933196220916361983066563, −6.03778806469080441295861036019, −4.97052772348929431356979779258, −3.95933523764144316587290284155, −3.01834799024711530974352904602, −1.75956803848388461262100100893,
0.825292372065571275092538731223, 1.49306852088425134059360469048, 3.00050595800803128659138899581, 4.57899052820795954107474218400, 5.50130809309812186261251882560, 5.77280444537212865828132109344, 6.91427087831815227161998841342, 7.88018801084628637121986106705, 8.654467078048136769094681098207, 9.392413258064569802376148067193