Properties

Label 2-1176-21.17-c1-0-1
Degree $2$
Conductor $1176$
Sign $-0.903 + 0.428i$
Analytic cond. $9.39040$
Root an. cond. $3.06437$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.697 + 1.58i)3-s + (2.00 + 3.47i)5-s + (−2.02 − 2.21i)9-s + (−3.26 − 1.88i)11-s − 4.48i·13-s + (−6.91 + 0.758i)15-s + (−2.05 + 3.56i)17-s + (−5.69 + 3.28i)19-s + (−4.33 + 2.50i)23-s + (−5.56 + 9.63i)25-s + (4.91 − 1.67i)27-s − 1.23i·29-s + (0.809 + 0.467i)31-s + (5.26 − 3.86i)33-s + (−1.01 − 1.75i)37-s + ⋯
L(s)  = 1  + (−0.402 + 0.915i)3-s + (0.897 + 1.55i)5-s + (−0.675 − 0.736i)9-s + (−0.984 − 0.568i)11-s − 1.24i·13-s + (−1.78 + 0.195i)15-s + (−0.499 + 0.865i)17-s + (−1.30 + 0.753i)19-s + (−0.904 + 0.522i)23-s + (−1.11 + 1.92i)25-s + (0.946 − 0.322i)27-s − 0.228i·29-s + (0.145 + 0.0839i)31-s + (0.916 − 0.672i)33-s + (−0.166 − 0.288i)37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1176 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.903 + 0.428i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1176 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.903 + 0.428i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1176\)    =    \(2^{3} \cdot 3 \cdot 7^{2}\)
Sign: $-0.903 + 0.428i$
Analytic conductor: \(9.39040\)
Root analytic conductor: \(3.06437\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1176} (521, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1176,\ (\ :1/2),\ -0.903 + 0.428i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6624877231\)
\(L(\frac12)\) \(\approx\) \(0.6624877231\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (0.697 - 1.58i)T \)
7 \( 1 \)
good5 \( 1 + (-2.00 - 3.47i)T + (-2.5 + 4.33i)T^{2} \)
11 \( 1 + (3.26 + 1.88i)T + (5.5 + 9.52i)T^{2} \)
13 \( 1 + 4.48iT - 13T^{2} \)
17 \( 1 + (2.05 - 3.56i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (5.69 - 3.28i)T + (9.5 - 16.4i)T^{2} \)
23 \( 1 + (4.33 - 2.50i)T + (11.5 - 19.9i)T^{2} \)
29 \( 1 + 1.23iT - 29T^{2} \)
31 \( 1 + (-0.809 - 0.467i)T + (15.5 + 26.8i)T^{2} \)
37 \( 1 + (1.01 + 1.75i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 - 2.21T + 41T^{2} \)
43 \( 1 + 3.14T + 43T^{2} \)
47 \( 1 + (2.92 + 5.07i)T + (-23.5 + 40.7i)T^{2} \)
53 \( 1 + (-3.95 - 2.28i)T + (26.5 + 45.8i)T^{2} \)
59 \( 1 + (-0.982 + 1.70i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (8.00 - 4.62i)T + (30.5 - 52.8i)T^{2} \)
67 \( 1 + (3.88 - 6.72i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 - 7.97iT - 71T^{2} \)
73 \( 1 + (-12.8 - 7.41i)T + (36.5 + 63.2i)T^{2} \)
79 \( 1 + (1.85 + 3.20i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 + 9.15T + 83T^{2} \)
89 \( 1 + (-6.53 - 11.3i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 - 7.06iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.32064827219742519584534537382, −9.893680634736706033605094473984, −8.626063097544345620201655338387, −7.85801567183076708259986041768, −6.62741942239721775334383874651, −5.89882515541323938019553185093, −5.48888724320609461099756188907, −4.00788256937697842095272314176, −3.14566550701413402742499342219, −2.23794159227773555125323202771, 0.27185823990018866055760531006, 1.77550124155596717862855185287, 2.36592465785926988082257129811, 4.64287517872121031959522838601, 4.84213062685036798257461697996, 6.01554196862369983009638855902, 6.65199003425235348619599399000, 7.69551675079020871658954005423, 8.581588319453766495736195183418, 9.132138118083791819720052068863

Graph of the $Z$-function along the critical line